5-я Кабельная ул., 2, стр. 1, Москва
(м. Нижегородская, МЦК Нижегородская, м. Авиамоторная)
трк спортех
Почему водяная система охлаждения мотоцикла лучше воздушной?
27 августа, 2019
С самого начала у двигателей мотоциклов были теплоотводящие радиаторы, поэтому для многих гонщиков было шоком, когда с появлением жидкостного охлаждения они стали лишними. В результате тоски по былому появились накладные декоративные радиаторы снаружи водяной рубашки двигателя.
Подозреваю, что жидкостное охлаждение оригинального GL1000 Honda, представленного в конце 1974 года, во многом было связано с разработкой этой компанией автомобиля с низким уровнем выбросов «Civic», имеющего систему сгорания «CVCC», которая работает на обедненной смеси. Многие инженеры из Honda были вовлечены в эту работу, которая началась вскоре после «Восстания инженеров» в 1968 году. В то время разработка автомобиля Х1300 с воздушным охлаждением Хонды столкнулась с таким количеством проблем, что его старый бизнес-партнер Такео Фуджисава принял сторону инженеров и поддержал переход на жидкостное охлаждение. Новой целью автомобильной сферы был контроль выбросов, который стал основным приоритетом на рынке.
Лодочный мотор Tomking TK200RE с реверсом, электростартом и воздушным охлаждением
Воздушное охлаждение затрудняет контроль выбросов, поскольку температура таких двигателей меняется в зависимости от погоды — летом температура выше, а зимой – ниже. Когда топливно-воздушная смесь поступает в цилиндр двигателя через такт впуска, эта смесь нагревается до температуры поверхностей, которые окружают ее — стенки и головки цилиндра и головки поршня. Это нормально, если температура двигателя постоянна — мы просто продуваем карбюратор для подачи желаемой смеси, зная, что плотность воздуха в двигателе не изменится.
Воздушное охлаждение затрудняет контроль выбросов из-за изменяющегося климата, в котором эксплуатируется мотоцикл.
Но температура двигателя с воздушным охлаждением постоянно повышается и понижается в зависимости от погодных условий и мощности двигателя.
Двигатели с воздушным охлаждением сильно нагреваются на высоких уровнях мощности, но хорошо охлаждаются на холостом ходу и неторопливой езде. Чем сильнее нагревается двигатель, тем больше поступающая в него топливно-воздушная смесь расширяется и теряет плотность. Это не только уменьшает мощность в той же степени, насколько уменьшилась плотность смеси, но также уменьшается мощность, из-за того что воздух теряет плотный, а смесь становится гуще.
Это еще более сложно, если гонщик настолько увлечен (как я был зимой 1968 года), что ездит на байке круглый год. Из-за низкой зимней температуры увеличивается плотность воздуха, поэтому в сравнении с топливом воздуха больше – это и есть состояние обедненной смеси. Если карбюратор подает правильную смесь зимой, она будет эффективной и в августе.
У гонщиков не было никаких проблем с этим — они привыкли к повторной установке карбюратора(ов) несколько раз в день, чтобы максимизировать мощность и реакцию. Но гонщики обычных серийных мотоциклов просто хотят кататься, поэтому их карбюраторы оборудованы под компромисс – обедненная смесь зимой, густая летом.
4 причины, почему отказались от двигателей с воздушным охлаждением
Затем появились экологи и вместе с ними бесконечное давление, чтобы уменьшить количество выбросов выхлопных газов двигателя. Учитывая ограничения карбюраторных топливных систем, самый быстрый способ сделать топливно-воздушные смеси более стабильными на протяжении всего года — это обеспечить постоянную температуру двигателя с помощью жидкостного охлаждения, регулируемого термостатом. И именно так и действовала мотоциклетная промышленность в 1980-х годах — в основном.
Да, вы можете не согласиться, я понимаю. Но сегодня карбюраторы исчезли, и им на замену пришел способ контроля смеси через замкнутый круг, путем электронной подачи топлива и кислородный датчик на выхлопной трубе. Так ли хорошо эта система может справиться с колебаниями температуры двигателя? Да, DFI (электронная подача топлива) может поставлять стабильную смесь, но она не может восстановить мощность, которая теряется из-за пониженной плотности воздуха, когда двигатель с воздушным охлаждением слишком сильно нагревается.
Моторное масло, чтобы справиться с сильными колебаниями температуры двигателя с воздушным охлаждением, должно быть либо универсальным, либо иметь разную вязкость масла для лета и зимы. На многофункциональном универсальном двигателе с воздушным охлаждением плохо сказывается быстрое испарение маловязкого масла (например, 10W в масле 10W-40), когда стенки цилиндра сильно нагреваются летом, добавляя к выхлопным газам еще и несгоревшие углеводороды (UHC) или выбрасывая их из фильтра картера. Использование зимой и летом масла разной вязкости идет вразрез с современной тенденцией к минимальному техническому обслуживанию.
Еще одна проблема — температурные изменения в зазорах двигателя. Коленвал изготовлен из стали, но алюминиевый картер, на котором он держится, изготовлен из алюминия, который расширяется при нагревании в три раза больше, чем сталь. Поэтому летом, когда масло более жидкое, зазоры подшипников максимально расширяются. Двигатели F1 работают на синтетических маслах, которые настолько жидкие, что крошечные зазоры в подшипниках, которые им нужны, не позволяют стартеру включить двигатель до тех пор, пока он не будет предварительно нагрет благодаря циркуляции по нему горячей охлаждающей жидкости. Термостатическое жидкостное охлаждение означает, что зазоры остаются неизменными.
Поршни в двигателях с воздушным охлаждением нагреваются сильнее, потому что все, что им нужно для охлаждения — это контакт с умеренно теплыми стенками цилиндров. Поэтому в таких двигателях, как правило, используются поршни с более длинной юбкой и большего веса, а не легкие поршни «пепельницы», встречающиеся в конструкциях с жидкостным охлаждением (для которых обычно используется моторное масло для поршневого охлаждения). Это дополнение для поршня служит в качестве «тепловой трубы» для отвода тепла от головки поршня к широкому месту соединения со стенкой цилиндра. Более тяжелые поршни способны выдерживать повышенную вибрацию и нагрузку на подшипники, но они были нормой 40 лет назад.
Теперь попробуем сохранить небольшой и стабильный зазор поршня в более широком температурном рабочем диапазоне двигателя с воздушным охлаждением. Не все так просто, и всевозможные отрицательные эффекты проявляются, когда поршни наклоняются и стучат от нагрузки по несущей поверхности при наличии большего зазора. Движение поршневого кольца может действовать наподобие миниатюрного масляного насоса, счищая масло со стенки цилиндра только для того, чтобы оно в итоге смешалось в воздух для горения, и превратившись в несгоревшие углероды, выйти через выпускного клапана (клапанов). Не беда, мы просто скажем инженерам продолжать экспериментировать, пока зазор поршня не стабилизируется при любых условиях. Более менее.
Двухцилиндровый двигатель с жидкостным охлаждением от Kinasaki Ninja 400. С двигателем с жидкостным охлаждением легче добиться низкого уровня выбросов, а количество моделей с воздушным охлаждением становится все меньше и меньше.
Источник: sportex-tc.ru
Миф о «воздушниках»: чем воздушное охлаждение круче жидкостного
Моторы-«воздушники» получили отставку совершенно зря. Достоинств у них столько, что любой новомодный турболитр с даунсайзингом в придачу позавидуют. И о многих плюсах воздушного охлаждения некоторые сегодня даже не догадываются.
На первый взгляд – взгляд потребителя, владельца семейной легковушки или целого коммерческого автопредприятия – преимущества двигателей с воздушным охлаждением лежат на поверхности:
«воздушник» конструктивно проще мотора с жидкостным охлаждением
он надежнее;
он дешевле в эксплуатации.
О минусах воздушного охлаждения все тоже как будто наслышаны, и напомнить о них здесь стоило бы лишь для соблюдения баланса аргументов. Но на самом деле есть только один значимый для потребителя недостаток мотора с воздушным охлаждением:
«воздушник» более шумный.
Все остальные минусы или давно потеряли актуальность, или всегда были досужими сказками. Так что есть повод поговорить об этих незаслуженно подзабытых агрегатах подробнее.
Из истории «воздуха»
Да, было время, когда автомобильные моторы с воздушным охлаждением проигрывали собратьям с охлаждением жидкостным (тогда говорили – водяным, поскольку антифризы были понятием чисто теоретическим). Двигатели-«воздушники» получались менее мощными, перегревались летом и не прогревались зимой.
Из-за температурных проблем ресурс такого двигателя был меньше, часто случались отказы. Но все эти вопросы были решены к 1950-м годам, когда воспрянувшая после Второй мировой Европа начала пересаживаться с велосипедов на компактные автомобильчики. Дешевые и неприхотливые «воздушники» начали массово применять не только на VW Beetle, но и на Citroen 2CV, Fiat 500, NSU Prinz и прочих автомобилях. И это мы еще не говорим о целой плеяде серийных заднемоторных спорткаров Porsche, 4-, 6- и 8-цилиндровые моторы которых вплоть до 1998 года охлаждались воздухом!
В то время как немецкий «Жук» с его обдуваемым воздухом оппозитником во всем мире мигом стал образцом простоты и безотказности, в нашей стране сложилось устойчивое и по сей день не искорененное предубеждение против моторов воздушного охлаждения. Дескать, они и греются безбожно, и ломаются через день, да и силенок у них маловато.
Виноват во всем бедолага «Запорожец», которому пришлось отдуваться за честь всех «воздушников» перед лицом целого СССР. Вместе с сомнительным качеством сборки ЗАЗикам досталась мизерная по масштабам СССР сервисная сеть. Сам по себе мелитопольский силовой агрегат МеМЗ был неплох, но обслуживаемый в кустарных условиях, заправляемый «автолом» и ремонтируемый «на коленке», он в самом деле не был примером надежности. Поэтому прежде чем продолжить повествование, хочу попросить читателя ассоциировать понятие «воздушник» не с «Запором», а с «Жуком» или хотя бы с «Ситроен де шво». Так будет честнее.
1. Он греется – неправда
На самом деле, температурные особенности моторов-«воздушников» можно отнести не к минусам, а к плюсам. Да, из-за меньшей теплоемкости и теплопроводности воздух не может так быстро отобрать тепло, как вода или антифриз. Но с другой стороны разница температур между стенками цилиндров и забортным воздухом больше, чем между теми же стенками и циркулирующей в системе охлаждающей жидкостью. Поэтому тепловой режим «воздушника» меньше зависит от погоды – то есть вероятность перегрева двигателя-«водянки» даже с самым большим радиатором в жару намного выше.
Еще одно очень важное преимущество «воздушника» – в три-четыре раза более быстрый прогрев после холодного пуска. Отсюда – и экономия топлива, и продление ресурса, и лучшая экология, и, наконец, удобство для водителя. Только у самых сложных «жидкостных» моторов образца 2010-х годов, имеющих три контура системы охлаждения, получается достигнуть подобных показателей прогрева.
2. Он громоздкий – неправда
Внешне «воздушник» может казаться более массивным, поскольку его цилиндры и головки со всех сторон окружены кожухами-воздуховодами, да и вентилятор обдува с дефлектором обычно выглядит более чем внушительно. Но предметное сравнение габаритов двух моторов с одинаковыми диаметром цилиндров и ходом поршня, но разными системами охлаждения, говорит о том, что габариты если и отличаются, то как раз в пользу «воздушника» – зачастую он оказывается чуть компактнее. Но главное даже не это.
Что касается размеров, справедливо будет принимать во внимание габариты не одного только двигателя, но и тех его неотъемлемых компонентов, которые крепятся отдельно, на кузове. Вот тут и проявляется неопровержимое преимущество «воздушника»: говоря современным языком, он выполнен в форм-факторе «моноблок», в то время как «водянка» имеет вынесенный на кузов громоздкий радиатор с вентилятором и системой шлангов. Которые, естественно, компактности силовому агрегату не добавляют.
3. Он ненадежный – неправда
На самом деле надежность двигателя с воздушным охлаждением существенно выше, ведь по статистике система жидкостного охлаждения служит причиной 20% всех отказов двигателя. А у «воздушника» как раз отсутствуют компоненты, обладающие низкой отказоустойчивостью: радиатор, термостат, помпа, трубопроводы, сальники и прочие уплотнения. Вентилятор и дефлекторы для обдува цилиндров воздухом устроены существенно проще, поэтому вероятность их отказа мизерна. Кстати, по этой же причине затраты на обслуживание «воздушников» также ниже.
4. Он шумный – правда
Что есть, то есть – шумит. И поделать с этим ничего нельзя. Точнее, идеи есть, но воплотить все их очень сложно. Беда в том, что у «воздушника» нет такой эффективной шумоизоляции, как двойные стенки рубашки охлаждения, заполненной водой или антифризом. И более того, все шумы мотора (механические, газообмена, горения) порой усиливаются ребрами цилиндров и головок.
Поэтому конструкторы борются в первую очередь с источниками шумов, повышая жесткость деталей и применяя подпружиненные разрезные шестерни приводов, гидрокомпенсаторы клапанов, материалы с точно подобранным коэффициентом температурного расширения. Аэродинамические шумы вентилятора можно значительно уменьшить, но это дело нелегкое – нужны серьезные усилия конструкторов и технологов.
Двигатель Fiat 500
5. Малый ресурс – неправда
В первые 50 лет автомобильной эры к воздушному охлаждению конструкторы относились легкомысленно – дует мощный вентилятор на оребренные цилиндры, да и ладно. Но такое охлаждение часто было неравномерным, с застойными зонами и местными перегревами. Цилиндры деформировались, нарушались установленные зазоры цилиндропоршневой группы, масло коксовалось и выгорало. В результате детали изнашивались более интенсивно, чем у моторов с водяной «рубашкой», которая более равномерно распределяла выделяемое через стенки цилиндров тепло и отбирала его. Но организовать ровный обдув воздухом всех горячих зон двигателя оказалось не так уж сложно, и со временем двигатели-«воздушники» получили рациональное распределение тепла.
Еще один нюанс, уже из области высоких материй: при воздушном охлаждении проще организовать более высокую температуру стенок цилиндров (независимо от их головок). «Лишние» 15-20 °C снижают потери на трение колец о цилиндры (масло-то на стенках более жидкое!), а также уменьшают их износ (в том числе и коррозионный) и замедляют старение масла за счет его меньшего окисления. Выше уже было сказано о том, что мотор с воздушным охлаждением работает в холодном состоянии в несколько раз меньшее время, чем мотор с водяным – а значит, и время интенсивного износа трущихся пар намного меньше.
6. Он хилый – неправда
Причина для подобного обвинения есть, но суть проблемы такова, что ею можно пренебречь. Дело в том, что при увеличении нагрузки температура охлаждаемых воздухом цилиндров и их головок быстро повышается, а значит, повышается температура воздуха, поступающего в цилиндры. Отсюда – худшее весовое наполнение цилиндров рабочей смесью и кратковременное падение отдачи двигателя.
Но исследования ученых-моторостроителей показывают, что разница коэффициента наполнения цилиндров у «воздушников» и «водянок» не превышает 3,5%. И это при 2 000 об/мин, а с ростом оборотов разница вообще стремится к нулю. Таким образом, теоретически существующую особенность эффективного наполнения цилиндров конструкторы решают за счет повышения рабочих оборотов двигателя. И, разумеется, данный вопрос вообще не касается наддувных двигателей воздушного охлаждения.
Источник: www.drive2.ru
Домашняя яхт-верфь.
Сайт создан для тех, кто мечтает построить яхту своими руками — яхту своей мечты…
- Главная
- About
- Начинающим.
- Опыт.
- Проекты яхт.
- Армоцементные яхты.
- Катамараны
- Моторно — парусные яхты.
- Трейлерные яхты
- Тримараны
- Яхты до 10 метров.
- Яхты свыше 10 метров
- Швертботы
Двигатели с воздушным охлаждением на малых судах.
Вода в качестве средства охлаждения двигателя внутреннего сгорания используется практически с первых же лет его существования. Тем более оправдано применение двигателей с водяным охлаждением на судах, на которых нет недостатка в сравнительно холодной забортной воде. И тем не менее, в последнее десятилетие конструкторы ДВС все чаще обращаются к использованию не водяного, а воздушного охлаждения и не только для двигателей наземных транспортных средств, но и для судовых двигателей. Одной из причин этого является всеобщая озабоченность сохранением чистоты внешней среды.
К чистоте выхлопа и явлениям, сопутствующим работе двигателей на судах, предъявляются все более строгие требования. Как бы ни был «чист» двигатель с водяным охлаждением, вместе с нагретой водой из его системы охлаждения всегда выбрасывается в воду какое — то количество горючего и смазочного масла, проникающих в систему в результате не абсолютной герметичности соединений.
Есть и другие доводы в пользу воздушного охлаждения судовых ДВС, причем все они вытекают из недостатков систем водяного охлаждения. Взять хотя бы коррозию рубашки двигателя от контакта ее поверхностей с проточной забортной водой. Коррозия блока цилиндров и его головки нередко является главной причиной преждевременного выхода двигателя из строя. Правда, некоторые фирмы снабжают системы охлаждения протекторной защитой в виде цинковых анодов, монтируемых в водопроточных каналах двигателя. Однако периодически протекторы нуждаются в замене, для чего необходима частичная разборка двигателя.
Коррозия может быть также уменьшена при использовании двухконтурной системы водяного охлаждения, при которой в замкнутом внутреннем контуре циркулирует пресная вода. Однако применение двухконтурной системы усложняет конструкцию двигателя, увеличивает его массу и удорожает монтаж на судне: двигатель необходимо снабдить водо — водяным и водо — масляным холодильниками; кингстоном, фильтром и насосом забортной воды; термостатом; смонтировать трубопровод с определенным числом соединений.
Эта система является весьма уязвимой, требует постоянного внимания и контроля со стороны обслуживающего персонала — нужен контроль за температурой воды, работой насоса, очисткой фильтра и водозаборника, не говоря уже о необходимости открывать перед запуском кингстон забортной воды.
Как показывает опыт, в двадцати случаях из ста причиной отказа двигателей являются неполадки в системе водяного охлаждения как на судах, так я на наземных транспортных средствах. Вероятность отказа системы охлаждения повышается при эксплуатации судна в воде, засоренной взвешенными частицами ила или песка, которые забивают фильтры и приемную решетку системы. При отрицательных температурах возможно размораживание двигателя, при котором в рубашке цилиндров и головке блока могут появиться трещины.
Как надежные и неприхотливые в эксплуатации ДВС воздушного охлаждения получили широкое распространение на тракторах, грузовых автомобилях, дорожных и горных машинах, работающих в самых сложных условиях. Одним из крупнейших поставщиков дизелей с воздушным охлаждением на мировом рынке является фирма «Дёйтц» (ФРГ), выпускающая в настоящее время около 40 моделей таких ДВС мощностью от 5 до 500 л. с. Имеются образцы 1000-сильных дизелей, однако дальнейшему повышению мощностей ДВС с воздушным охлаждением препятствует чрезмерное увеличение размеров ребер охлаждения цилиндров, что, помимо увеличения габаритов и массы двигателей, вызывает определенные конструктивные трудности.
Использование ДВС воздушного охлаждения на судах не является технической новинкой, точнее будет сказать, что в последние годы оно получает новый толчок. Можно, например, вспомнить глиссеры 30-х годов или современные мелкосидящие катера с воздушными винтами, приводимыми от мощных авиационных моторов. На большинстве судов на воздушной подушке ДВС с воздушным охлаждением приводят во вращение вентиляторные установки.
В этих случаях используются такие положительные качества двигателей воздушного охлаждения, как малый вес на единицу мощности и простота конструкции. Поскольку ДВС устанавливаются за воздушным винтом или вентилятором — в струе воздуха, имеющего достаточно высокую скорость, охлаждение их не представляет никаких проблем. В последние годы судостроители обращают пристальное внимание на двигатели другого рода — надежные и имеющие большой моторесурс дизели воздушного охлаждения, пригодные для более тяжелых условий службы на судах различного назначения.
Одними из первых типов судов, которые стали оснащаться дизелями воздушного охлаждения, стали спасательные шлюпки и бортовые катера для морских судов. Для них ценна возможность запуска двигателя до спуска шлюпки на воду, когда она еще висит на шлюпбалках и заполняется людьми. Как только шлюпка окажется на воде и будут отданы гаки шлюп — талей, она немедленно отойдет от борта.
Конструкция современных шлюпочных дизелей с водяным охлаждением рассчитана на работу в течение 10—12 мин без контакта шлюпки с водой, но ДВС воздушного охлаждения может работать в таких условиях неограниченное время без опасности закипания воды, которая существует у обычных шлюпочных дизелей. Кроме того, при плавании в арктических водах в систему водяного охлаждения приходится добавлять антифриз и предусматривать специальные устройства для облегчения холодного запуска.
Условия размещения дизеля воздушного охлаждения на открытой шлюпке практически не отличаются от условий, в которых он работает на тракторе — он открыт для воздуха со всех сторон и ничто не препятствует свободному отводу подогревшегося воздуха. Попытки же применить такие ДВС в тесных моторных отсеках запалубленных катеров и яхт первое время часто оказывались неудачными: не уделялось достаточного внимания обеспечению циркуляции больших масс воздуха у двигателя.
Заметим, что для охлаждения двигателя требуется примерно в 25 раз большее количество воздуха, чем для сгорания топлива в его цилиндрах. Поэтому после запуска двигателя температура в моторном отсеке и смежных помещениях быстро поднималась, особенно если нельзя было открыть двери и люки.
Сейчас эта проблема успешно решена и количество судов различного назначения, оснащенных ДВС воздушного охлаждения, ежегодно увеличивается. Среди них немало судов, получивших класс различных классификационных обществ, что является высшей оценкой надежности и пригодности к эксплуатации на море. В частности, японский рыболовный флот насчитывает более 3000 мото — ботов и сейнеров, оборудованных дизелями «Дёйтц — Митсуи» ряда FL 912 мощностью от 17 до 110 л. с.
Успешно эксплуатируются лоцманские боты, патрульные катера, паромы, моторные и моторно-парусные яхты, на которых установлены дизеля с воздушным охлаждением. На ряде озер в Центральной Европе, где запрещено плавание судов с обычными ДВС, сделано исключение для пассажирских и прогулочных катеров с двигателями воздушного охлаждения (иногда со спаренной установкой при мощности дизелей по 220 л. с.).
Имеется положительный опыт применения дизелей с воздушным охлаждением типа Д22 и Д37 производства Владимирского тракторного завода и в отечественном малом судостроении. В частности, эти двигатели устанавливались на плавучих комбайнах ИРД, предназначенных для эксплуатации на внутренних водоемах для искусственного разведения рыбы; они непременно должны были отвечать повышенным требованиям к чистоте воды.
Однако широкого распространения на малых судах эти двигатели не получили из-за отсутствия в серийном производстве реверсивно — редукторных передач, пригодных для их комплектации. Итак, ДВС воздушного охлаждения имеют определенные качества, позволяющие рассматривать их как перспективный тип двигателей для малых судов. Познакомимся с некоторыми их особенностями, которые следует учитывать при установке на судно.
При водяном охлаждении максимальная температура охлаждаемых поверхностей двигателя (в частности — головки блока и стенки цилиндра) ограничивается температурой кипения воды, т. е. 90—11О°С. При воздушном охлаждении температура стенок цилиндров может быть допущена значительно выше — до 150°. Благодаря этому смазочное масло становится более жидким, его смазочные свойства улучшаются, что способствует уменьшению износа стенок цилиндров и поршневых колец.
Топливо, попадающее в смазочное масло и не успевающее сгореть при холодном пуске, при хорошо прогретом двигателе испаряется, затем через сапун и всасывающий тракт оно вновь поступает в цилиндры, где и сгорает. В судовых двигателях с водяным охлаждением при нормальной эксплуатации перегрева не бывает, поэтому попавшее в масло топливо остается в нем, ухудшая смазочные свойства. Для компенсации разжижения масла топливом приходится периодически доливать масло в расходный бак.
Большие температурные перепады, на которые рассчитывается ДВС воздушного охлаждения, обусловливают важные преимущества их при работе в условиях высоких температур окружающего воздуха. Для них не существует опасности закипания воды в межрубашечном пространстве при засорении системы охлаждения, неисправности насосов забортной или циркуляционной воды, а также размораживания системы в случае отрицательных температур.
При холодном запуске дизеля воздушного охлаждения температура выпадения конденсата на стенках цилиндров достигается за срок, примерно в три раза более короткий, чем у двигателя с водяным охлаждением. Это обусловливает менее благоприятные условия для развития коррозии в цилиндрах ДВС воздушного охлаждения и больший срок их службы.
Распространенное мнение о том, что ДВС воздушного охлаждения создают при работе больше шума, чем двигатели с водяным охлаждением, в настоящее время потеряло под собой почву. Проведенные исследования показали, что тип охлаждения не является фактором, предопределяющим уровень шумности двигателя. Водяная рубашка отнюдь не является шумопоглощающей изоляцией, как это ранее предполагалось. Гильзы цилиндров, будучи соединенными со стенками картера, передают через него шум, создаваемый двигателем.
При тщательной доработке аэродинамических качеств вентилятора воздушного охлаждения шум двигателя может быть существенно снижен, особенно в его высокочастотных спектрах, оказывающих наибольшее звуковое воздействие на человека. ДВС воздушного охлаждения имеют несколько меньшие габариты и массу при равной мощности с двигателями водяного охлаждения.
Естественно, что у ДВС воздушного охлаждения имеются и недостатки, которые связаны прежде всего с работой этих двигателей на повышенном тепловом режиме. В целом такой режим благоприятно сказывается на некотором повышении термического КПД двигателя и его экономичности, но и в то же время происходит довольно большой угар масла. Это приводит к необходимости более частой замены масла в двигателе, повышенному образованию нагара на поршнях, клапанах, поршневых кольцах и форсунках и как следствие — к износу таких деталей.
При установке ДВС воздушного охлаждения на судне необходимо обеспечить подвод холодного наружного воздуха к вентилятору двигателя и отвод теплого воздуха в атмосферу. Если двигатель установлен в моторном отсеке у транца, воздухозаборники могут быть расположены в переборке, отделяющей отсек от кокпита. Иногда они выполняются в виде шахт, подводящих воздух из заборников, смонтированных в боковых или передней стенках рубки.
Важно, чтобы вместе с воздухом в моторный отсек не попадала вода с верхней палубы и воздух опускался беспрепятственно до трюма в моторном отсеке. В этом случае холодный воздух на пути в вентилятор двигателя будет охлаждать реверс — редуктор, топливные цистерны, переборки отсека. Вместе с ним будут удаляться газы, скапливающиеся в трюме.
При размещении двигателя у транца отвод горячего воздуха (его температура около 50 о ) может осуществляться через короткую трубу, соединяющую выходное отверстие в транце с патрубком на двигателе. При размещении двигателя в средней части судна оптимальной конструкцией отвода воздуха является вертикальная шахта, заканчивающаяся дымовой трубой над палубой или рубкой. Внутри шахты можно пропустить выхлопной трубопровод, который будет охлаждаться омывающим его воздухом, потому его не требуется изолировать.
Чтобы выхлопные газы не попадали в трубу, срез газовыхлопа желательно расположить слегка выше кромки дымовой трубы. Трубопровод, отводящий горячий воздух, должен быть по возможности коротким и не иметь крутых поворотов с тем, чтобы не оказывать сопротивления работе вентилятора. После остановки двигателя вентиляция моторного отсека происходит естественным путем — за счет тяги дымовой трубы.
Воздушные заборники и шахты в ряде случаев отнимают полезный объем помещений на малых судах и требуют определенных затрат на их изготовление и монтаж. Однако эти затраты окупаются надежностью, простотой обслуживания и другими эксплуатационными качествами двигателей с воздушным охлаждением.
Источник: yachtshipyard.wordpress.com