Кавитация лодочного мотора что это

11.8.1. Природа кавитации. Кавитацией называется явление разрыва сплошности течения капельной жидкости при понижении местного давления до некоторого критического значения ркр. Область разрыва (кавитационная каверна) представляет собой объем, заполненный парами жидкости и растворенными в ней газами.

Давление внутри каверны близко к давлению насыщенных паров рd при данной температуре. Отсюда кавитацию гребного винта обычно рассматривают как явление вскипания воды в потоке, вызванном винтом, при снижении местных давлений до давления насыщенных паров, полагая ркр рd.

Природу кавитации можно проследить на примере элемента лопасти обтекаемого под углом атаки потоком жидкости, имеющим на бесконечности в точке А скорость υ0 и давление р0 (рис.117). Выделим на одной линии тока с точкой А точку В у поверхности элемента лопасти. Скорость и давление в точке В обозначим соответственно через υ1 и р1. Тогда уравнение Бернулли для линии тока запишется так:

Из формулы видно, что в тех точках поверхности элемента, где υ1>υ0 , давление понижается δр10 давление повышается δр>0. В результате на нагнетающей стороне лопасти вращающегося винта создается зона повышенного давления, на засасывающей стороне — зона пониженного давления.

КАВИТАЦИЯ №39

Характерное распределений давлений на засасывающей и нагнетающей поверхности лопасти работающего гребного винта показано на рис.117. Как следует из рисунка, площадь эпюры давлений, а следовательно, и величина упора, развиваемого гребным винтом, на 70 80% определяется разряжением на засасывающей поверхности и

только на 20 30% — повышением давления на нагнетающей поверхности лопасти.

Рис.117. Схема обтекания элемента крыла

При определенной частоте вращения гребного винта скорость обтекания лопасти достигает значения в 3 5 раз превышающего поступательную скорость судна. При этом давление на засасывающей поверхности понижается до давления насыщенных паров. В результате холодного кипения воды из нее выделяются растворенные газы. Пары и газы оттесняют воду от поверхности лопасти и образуют на ее засасывающей стороне кавитационную каверну.

11.8.2. Стадии кавитации и влияние кавитации на работу гребного винта.Различают две стадии кавитации. Первая характерна тем, что каверна захватывает только часть засасывающей поверхности лопасти, где скорость частиц наибольшая.

На этой стадии гидродинамические характеристики гребного винта изменяются незначительно по сравнению с их значениями при безкавитационном обтекании. Объясняется это тем, что площади эпюр давлений при безкавитационной работе винта и в условиях первой стадии кавитации практически равны. Однако первая стадия кавитации нежелательна, так как является причиной механического разрушения материала лопасти — эрозии. Пары воды, переходя из области каверны в область более высоких давлений, конденсируются. Процесс конденсации пара и

РАБОТА ВИНТА ПЛМ ПОД ВОДОЙ. КАВИТАЦИЯ.

смыкания (разрушения) кавитационных пузырьков происходит с большой скоростью. В момент конденсации пузырьков пара вода мгновенно заполняет образующую пустоту, нанося по лопасти гидродинамические удары, причем местные давления достигают больших значений. В результате, в местах замыкания каверны, поверхность лопасти разрушается.

На второй стадии кавитационная каверна захватывает всю засасывающую сторону лопасти и замыкается в потоке за гребным винтом. На этой стадии кавитации эрозии не происходит, так как пары конденсируются за пределами лопасти. Однако гидродинамические качества винта по сравнению с безкавитационным обтеканием заметно ухудшаются.

Увеличение частоты вращения винта уже не приводит к уменьшению давления на засасывающей поверхности лопасти, где р рd, отчего упор винта практически не растет. Кроме того, потоком обтекается профиль более низкого гидродинамического качества (за счет каверны). Это вызывает увеличение вращающего момента, приложенного к винту, и уменьшение КПД движителя.

Читайте также:  Размеры прицепа мзса для лодки

Представление об ухудшении гидродинамических качеств винта, можно составить по кривым действия винта, отвечающим безкавитационному обтеканию и кавитации различной степени развития (рис.118). Сплошными линиями нанесены зависимости коэффициентов упора , момента , и КПД ηр винта от относительной поступи λр при безкавитационнном обтекании и в первой стадии кавитации. Пунктирные линии представляют те же зависимости при наступлении второй стадии кавитации. Видно, что ухудшение гидродинамических характеристик наблюдается с уменьшением λр (например, с увеличением частоты вращения винта n при υp = const), что обусловлено увеличением углом атаки на лопастях. Величины , и ηр во второй стадии кавитации зависят не только от λр, но и от параметра χ, называемого числом кавитации. Последнее характеризует величину предельного разряжения на лопасти, (в долях скоростного напора), которое может быть достигнуто в воде в заданных условиях:

где ра — атмосферное давление; hс — глубина погружения винта (рис.117).

Рис.118.Кривые действия кавитирующего винта

Число кавитации определяется только внешними факторами (ра, hс плотностью и температурой воды от которой зависит рd), поступательной скоростью υp и не зависит от геометрических элементов гребного винта.

Критическое число кавитации χкр соответствует возможному наибольшему разрежению на лопастях при докавитационных режимах их обтекания. Начало кавитации гребного винта определяется условием χ = χкр. При χ > χкр кавитация отсутствует, при χ < χкр винт кавитирует, причем тем больше, чем меньше число χ по сравнению χкр (рис.118).

В какой бы стадии не протекала кавитация, она всегда приводит к нежелательным последствиям: усиливает шум работающего винта, вызывает эрозию лопастей, снижает гидродинамические характеристики гребного винта, увеличивает неравномерность загрузки

лопастей, что является одной из причин вибрации гребного вала и, как следствие, корпуса судна. Поэтому при проектировании винтов стремятся обеспечить их безкавитационную работу. С этой целью применяют профили с более равномерным распределением давлений по лопасти, увеличивают дисковое отношение, уменьшают относительную толщину лопасти, повышают давление на засасывающей стороне лопасти за счет погружения оси винта и т.п.

Для быстроходных судов (глиссирующие катера, катера на подводных крыльях и т.п.) во многих случаях не удается избежать кавитации гребных винтов, поэтому они оборудуются суперкавитирующими винтами (СКВ). Под суперкавитацией понимают сильно развитую вторую стадию кавитации, когда обтекание лопастей винта происходит со срывом струй и каверна уходит за пределы лопастей. Исходя из того, что при суперкавитации основная часть упора создается за счет давления на нагнетающей поверхности лопасти и форма засасывающей поверхности не играет существенной роли, СКВ имеют клиновидный профиль сечения лопасти и искривленную нагнетающую поверхность (рис.119). Такая форма лопасти, с одной стороны, способствует образованию каверны оптимальных размеров, с другой — обладает наименьшим сопротивлением вращению гребного винта. В условиях суперкавитации такие винты обладают более высокими гидродинамическими качествами по сравнению с некавитирующими гребными винтами.

Рис.119.Профили сечений лопастей суперкавитирующих винтов

Конструктивной особенностью СКВ является также острая входящая кромка лопасти и смещение наибольшей толщины профиля к выходящей кромке. Клиновидные профили такой формы позволяют

уменьшить толщину каверн, образующихся в междулопастном пространстве, снизить их взаимное влияние и тем самым повысить гидродинамические характеристики винта. СКВ имеют сравнительно небольшое дисковое отношение Θ = 0,40 0,55, узкие лопасти, их число z = 2 3, что уменьшает возможность взаимного влияния каверн каждой лопастей.

Читайте также:  Лодка навигатор 380 нднд характеристики

Положительные качества СКВ проявляются при работе их на расчетном режиме в условиях полностью развитой кавитации. Для режимов, отличных от расчетных, когда кавитация отсутствует или развита частично, происходит повышенное вихреобразование позади тупой выходящей кромки лопасти СКВ, вследствие чего его КПД становится ниже, чем у обычных винтов. Начиная с χ = 0,4 и выше, СКВ уже уступают обычным гребным винтам.

Дата добавления: 2016-06-29 ; просмотров: 4524 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник: poznayka.org

Понятие о кавитации и эрозии гребных винтов.

Здравствуйте сегодня я хотел бы написать о том что такое «Кавитация» и «Эрозия» гребных винтов и как она происходит.

Для начала узнаем что такое кавитация — Кавитация (от лат. cavita — пустота) — процесс образования и последующего схлопывания пузырьков в потоке жидкости, сопровождающийся шумом и гидравлическими ударами, образование в жидкости полостей (кавитационных пузырьков, или пустот), которые могут содержать разреженный пар.
Если площадь лопастей небольшая, то давление здесь понижается настолько, что вода, обтекающая лопасть, вскипает, выделяя пузырьки пара. Микроскопические пузырьки сливаются в более крупные—каверны, а при очень сильном разрежении — в сплошную полость, что нарушает непрерывность потока. Это явление и называется кавитацией.

Различают две стадии кавитации. На первой студии каверны невелики и на работе винта практически не сказываются.

Однако пузырьки, лопаясь, создают огромные местные давления, отчего поверхность лопасти выкрашивается. При длительной работе кавитирующего винта такие эрозионные разрушения могут быть настолько значительными, что эффективность винта снизится.

При дальнейшем повышении скорости наступает вторая стадия кавитации. Сплошная полость захватывает всю лопасть и даже может замыкаться за ее пределами. Развиваемый винтом упор падает из-за резкого увеличения лобового сопротивления и искажения формы лопастей.

Кавитацию винта можно обнаружить по тому, что скорость лодки перестает расти, несмотря на дальнейшее повышение числа оборотов; гребной винт при этом издает специфический шум, на корпус передается вибрация, лодка движется скачками.

Момент наступления кавитации зависит не только от числа оборотов, но и от ряда других характеристик. Так, чем меньше площадь лопастей, больше толщина их профиля, ближе к ватерлинии расположен винт, тем при меньшей частоте вращения, т. е. «раньше», наступает кавитация. Появлению кавитации способствуют также большой угол наклона гребного вала, дефекты лопастей — изгиб, некачественная поверхность.

Так же при кавитации и возникает эрозия так как химическая агрессивность газов в пузырьках, имеющих к тому же высокую температуру, вызывает эрозию материалов, с которыми соприкасается жидкость, в которой развивается кавитация. Эта эрозия и составляет один из факторов вредного воздействия кавитации.

Кавитационная эрозия металлов вызывает разрушение гребных винтов судов, рабочих органов насосов, гидротурбин и т. п., кавитация также является причиной шума, вибрации и снижения эффективности работы гидроагрегатов.

Схлопывание кавитационных пузырей приводит к тому, что энергия окружающей жидкости сосредотачивается в очень небольших объёмах. Тем самым, образуются места повышенной температуры и возникают ударные волны, которые являются источниками шума и приводят к эрозии металла. Шум, создаваемый кавитацией, является особой проблемой на подводных лодках, так как снижает их скрытность.

Хотя кавитация нежелательна во многих случаях, есть исключения. Например, сверхкавитационные торпеды, используемые военными, обволакиваются в большие кавитационные пузыри. Существенно уменьшая контакт с водой, эти торпеды могут передвигаться значительно быстрее, чем обыкновенные торпеды.

Так сверхкавитационная торпеда «Шквал», в зависимости от плотности водной среды, развивает скорость до 370 км/ч. Еще кавитация используется при ультразвуковой очистке поверхностей твёрдых тел. Специальные устройства создают кавитацию, используя звуковые волны в жидкости. Кавитационные пузыри, схлопываясь, порождают ударные волны, которые разрушают частицы загрязнений или отделяют их от поверхности. Таким образом, снижается потребность в опасных и вредных для здоровья чистящих веществах во многих промышленных и коммерческих процессах, где требуется очистка как этап производства.

Читайте также:  Рейтинг ПВХ лодок 420

Ниже представлены фотографии как кавитация действует на гребной винт.

Источник: samvguvt.livejournal.com

Почему в лодках возникает кавитация?

Почему в лодках возникает кавитация?

Почему гребные винты катеров кавитируют? Чем быстрее вращается гребной винт, тем больше образуется пузырьков, что и является причиной кавитации. Замедление или снижение поверхностного давления уменьшит кавитацию и, следовательно, убережет ваш винт от ненужного неправильного обращения .

Что вызывает кавитацию лодочного мотора?

Кавитация возникает, когда существует резкое снижение давления на задней стороне лопастей гребного винта … Пузырьки водяного пара мигрируют к центру лопасти, где давление выше, и кипение прекращается. Пузырьки пара взрываются на поверхности лезвия .

Что вызывает кавитацию опоры?

Кавитация торцевого гребного винта возникает на ведущей поверхности гребного винта и часто возникает из-за неправильного распределения шага по длине лопасти, что приводит к слишком маленькому шагу законцовок и образованию в секциях лопасти отрицательный угол атакиЕго результаты часто встречаются на устройствах с регулируемой высотой звука .

Как остановить кавитацию на лодке?

Чтобы уменьшить возможность возникновения кавитации в морских гребных винтах, комплект насадок размещается на корпусе корабля непосредственно перед гребным винтом. Эти форсунки распыляют сжатый воздух над пропеллером, создавая «макропузырь» .

Что означает кавитация в двигателе?

Кавитация при образовании пузырьков воздуха на пропеллере Кавитация обычно возникает в результате повреждения и вы почувствуете ее в виде вибраций. … Во-вторых, это вызывает те вибрации, которые делают вашу езду менее комфортной. В-третьих, уменьшает клев, что снижает эффективность .

Got BOAT Prop PROBLEMS? Cavitation Vs. Ventilation.

Got BOAT Prop PROBLEMS? Cavitation Vs. Ventilation.

Популярная тема

Может ли кавитация быть существительным?

Может ли кавитация быть существительным?

Кавитация — это существительное. Существительное — это тип слова, значение которого определяет действительность. Существительные дают названия всем вещам: людям, предметам, ощущениям, чувствам и т. д . Как вы используете кавитацию в предложении?

Будет ли Starlink работать на лодках?

Будет ли Starlink работать на лодках?

«Высокопроизводительная» тарелка Starlink также была разработана, чтобы выдерживать суровые условия, согласно заявке, поданной SpaceX в FCC. SpaceX работает над «защищенной» версией своей антенны Starlink, предназначенной для работы вне автомобилей, лодок и самолетов и в суровых климатических условиях .

Как работает ультразвуковая кавитация?

Как работает ультразвуковая кавитация?

Как это работает? Ультразвуковая кавитация тонизирует тело с помощью радиочастот и низкочастотных ультразвуковых волн Эти волны формируют пузырьки вокруг жировых отложений под кожей. Затем пузырьки лопаются, разбивая жировые отложения в интерстициальную и лимфатическую системы, откуда они дренируются .

Есть ли на лодках туманные горны?

Есть ли на лодках туманные горны?

“Согласно международным правилам предотвращения столкновений в море, суда и все плавучие средства, находящиеся на ходу – движущиеся в воде – должны сигнализировать о своем присутствии в тумане сиреной . Почему корабли используют туманные горны?

Почему на лодках носовые фигуры?

Почему на лодках носовые фигуры?

Точно так же носовые фигуры на военных кораблях стремились показать богатство и могущество владельца. Носовые фигуры были резным изображением духа корабля в виде людей, зверей или мифологических фигур . Для чего нужны носовые фигуры на кораблях?

Источник: ru.greencarsbox.com

Рейтинг
( Пока оценок нет )
Загрузка ...