Основная функция тепловизора заключается в наблюдении за изменяющимся распределением температуры на какой-либо поверхности. Вся полученная информация отображается на дисплее, как цветовое поле, где каждый цвет соответствует определенному температурному значению. Современные модели тепловизоров могут быть стационарными и переносными. С помощью стационарных устройств контролируются различные технологические процессы, выполняемые на промышленных предприятиях. Переносные тепловизоры применяются в особых условиях, когда скорость и простота использования приобретают решающее значение.
Принцип работы тепловизора
Для работы тепловизоров годятся любые погодные условия. С их помощью составляются термограммы, проверяется качество утепления помещений, определяются наиболее холодные или теплые места в комнатах, источники сквозняков и места скопления воды из-за перепадов температур. Но, несмотря на все положительные качества, очень немногие могут приобрести его в личное пользование по причине довольно высокой стоимости. Поэтому многие умельцы пытаются изготовить тепловизор своими руками из подручных материалов.
КАК СДЕЛАТЬ ТЕПЛОВИЗОР ИЗ СМАРТФОНА | ПРОВЕРКА ЛАЙФХАКОВ от СЛАВЫ ШТИГЛИЦА
Благодаря способности к идентификации тепловых волн, тепловизоры стали популярны во многих областях жизни и деятельности людей. Все неодушевленные предметы, наряду с живыми существами, производят излучение электромагнитных волн в достаточно широком диапазоне частот, в том числе и в инфракрасном спектре. Инфракрасное излучение часто называется тепловым. Степень его интенсивности находится в зависимости от температуры объекта и практически не изменяется при разной степени освещения.
Данное свойство положено в основу работы тепловизора, не только фиксирующего тепловое излучение, выделяемое объектами, но и преобразующего в форму, доступную для визуального восприятия. С этой целью в приборе устанавливается специальный объектив с оптикой из германия. Данный материал применяется для изготовления линз, беспрепятственно пропускающих тепловое излучение. Обычное стекло нельзя использовать, потому что оно задерживает инфракрасные лучи.
Проходя через систему линз, инфракрасные волны задерживаются на специальной матрице. Она выполнена в виде микросхемы, состоящей из светочувствительных диодов, способных изменять сопротивление в зависимости от интенсивности воздействия на них инфракрасных лучей. Современные технологии позволяют создать матрицу компактной, с низкой энергоемкостью. Для улучшения качества изображения предусмотрено ее охлаждение с помощью программных и аппаратных средств.
Токовые посылки, прошедшие через матрицу, считываются процессором и преобразуются в видеосигнал, который выводится на внешний монитор или дисплей тепловизора. Разница температур объекта и окружающей среды дают вполне четкий контур изображения. Каждая волна в зависимости от температуры, отображается с помощью разных цветов. Для более удобного пользования прибором в некоторых моделях поверх кадра выводится шкала, отображающая соответствие разных точек изображения, значениям абсолютной температуры объекта. Дополнительно могут отображаться минимальные и максимальные значения температур.
Самодельный тепловизор на MLX90640
Что изобрел Томас Эдисон
Современные приборы обладают точностью вычислений в пределах 0,05 градуса, что дает возможность получить наиболее реалистичную картинку. Чаще всего настройка тепловизора выполняется на тепловые волны длиной 3-5,5 мкм. Это дает возможность снизить до минимума влияние на чувствительность прибора таких природных явлений, как дождь, снег, туман и дым.
Тепловизор своими руками из фотоаппарата
Одним из вариантов является самостоятельное изготовление тепловизора на базе фотоаппарата, в состав которого входит матрица со структурой, как и у настоящего прибора.
Изначально каждый фотоаппарат настраивается таким образом, чтобы человек получал изображения в натуральном виде. С этой целью устанавливается специальный фильтр, отражающий или поглощающий инфракрасные лучи. В результате, кривая чувствительности матрицы становится идентичной кривой человеческого глаза.
Для того чтобы фотоаппарат стал выполнять функции тепловизора, из него нужно удалить фильтр инфракрасного излучения. Иногда вместо него устанавливается фильтр видимого спектра, не имеющий большого значения и не влияющий на качество изображения. Таким же образом можно изготовить тепловизор для охоты своими руками.
Готовый тепловизор может применяться в домашних условиях. С его помощью легко обнаружить места проникновения в помещение холодного воздуха, ликвидировать сквозняки и утечку тепла.
Тепловизор своими руками из смартфона
Сам смартфон невозможно превратить в тепловизор без использования дополнительного оборудования. Однако с недавних пор стала выпускаться специальная приставка Seek Thermal, являющаяся по своей сути мобильным миниатюрным тепловизором, с размерами, не более спичечного коробка.
Этот мини-прибор способен работать со многими смартфонами на базе Андроид версии не ниже 4.3. Он выполняет те же функции, что и настоящие фирменные тепловизоры, подключается через стандартные разъемы. Получается довольно легко собрать самодельный тепловизор своими руками. Несмотря на маленькие размеры, объектив камеры оборудован кольцом для фокусирования, а также чувствительным сенсором в виде матрицы на 32 тыс. пикселей, частота съемки у которой составляет 9 Гц. Основным достоинством прибора считается величина рабочего температурного диапазона в пределах от -40 до +330 С.
Часто перегорают лампочки в квартире
Смартфон для тепловизора является не только экраном, отображающим информацию, но и своеобразной вычислительной машиной. Все действия выполняются с помощью специального приложения Seek Thermal, обладающего широкими возможностями. Данная программа позволяет сделать выбор цветовой палитры, единиц измерения температуры, выполнить настройку изображения и много других операций.
Тепловизор из видеокамеры своими руками
Одним из способов самостоятельного изготовления тепловизора является вариант с использованием видеокамеры. Для этого нужно заранее подготовить все необходимые материалы . Следует запастись обычным инфракрасным термометром, комплектом светодиодов RGB, платой Arduino и самой видеокамерой.
Решение задачи, как сделать тепловизор своими руками достаточно простое, за исключением особенностей программирования платы. В самом начале выполняется подключение инфракрасного термометра к плате Arduino. Данный элемент позволяет определить температуру объекта в какой-либо конкретной точке. Сама плата выполняет промежуточную функцию.
К ней подключаются заранее приготовленные светодиоды. Затем всю систему нужно запрограммировать таким образом, чтобы показания термометра совпадали с определенным цветом, который будут производить светодиоды. Если выполнить настройку в соответствии с общепринятыми стандартами, то высокой температуре будет соответствовать красный цвет, а более низким температурным показателям – синий.
Работоспособность всей конструкции проверяется путем направления на стену луча инфракрасного термометра. При этом светодиоды должны загореться установленными цветами. Однако такая проверка будет неполной в связи с отсутствием дисплея. Эта проблема легко решается с помощью обычной видеокамеры, настроенной на замедленную съемку.
Снимки производятся через каждые 2-3 секунды, фиксируя освещение, исходящее от светодиодов. На дисплее отображаются соответствующие цветные пятна.
Тепловизор своими руками из веб-камеры
Одним из вариантов такой сборки является использование рабочей веб-камеры и датчика температуры MLX90614, предназначенного для сканирования объекта. Его единственным недостатком считается очень низкая скорость сканирования. Однако на фоне существенной экономии денежных средств, эта проблема не имеет решающего значения.
Что такое преобразователи напряжения
Дополнительно понадобятся: плата Arduino, два сервопривода с корпусами, штатив, резисторы на 4,7 кОм – 2 шт., лазерная указка. Источником исходного изображения служит веб-камера, она же выполняет функции видоискателя.
С помощью двух сервоприводов осуществляется движение в горизонтальном и вертикальном направлениях. Нижний горизонтальный привод закрепляется на штативе, сюда же устанавливается лазерная указка. На вертикальный сервопривод прикрепляется веб-камера и датчик температуры. Датчики Arduino подключаются по специальной схеме.
Далее, когда тепловизор из камеры своими руками полностью собран, вся конструкция помещается в общий корпус и закрепляется на штативе. После этого можно начинать сканирование выбранной области. При этом лазерная указка выполняет функцию целеуказателя во время проведения съемки.
Самодельный сканирующий тепловизор из ик-датчика
Принцип работы светодиода: параметры и характеристики
Инфракрасные обогреватели вред и польза
Камера видеонаблюдения Wi-Fi
Камера видеонаблюдения к телевизору
Камеры видеонаблюдения с датчиком движения и записью
Источник: electric-220.ru
Тепловизор на FLIR Lepton своими руками
Наконец-то мы дожили до тех времен, когда тепловизионная техника, во-первых, стала доступна не только военным и шпионам, а во-вторых, миниатюризировалась до размеров карманного устройства. И более того, появились модули для сборки собственных DIY-тепловизоров. Но об этом позже.
Немного теории
Любые нагретые тела излучают ЭМИ. Закон смещения Вина, который говорит о том, на какую длину волны будет приходиться пик излучения нагретого абсолютного черного тела:
При комнатной температуре пик находится в ИК-диапазоне невидимом нашему глазу. Если мы, например, будем ковать железо, то при нагревании оно станет красным, потом белым… При охлаждении длина волны излучения будет увеличиваться, смещаясь назад в ИК-диапазон. Таким образом, из наблюдаемой длины волны теплового излучения мы можем получить температуру тела.
Но как быть с объектами, имеющими достаточно низкую температуру, например, комнатную? Они-то уж точно не светятся в видимом диапазоне. Здесь на помощь приходят специальные устройства — тепловизоры. Они умеют регистрировать волны среднего и длинного инфракрасного диапазона.
Такие приборы применяются, например, для мониторинга техники, когда нужно выяснить, какой элемент или узел нагревается свыше допустимого уровня. Также тепловизоры применяют для проверки утепления домов, определяя места и интенсивность утечки тепла.
Пример термографий (источник: интернет)
Например, когда я сделал свой тепловизор, то обследовал с его помощью пластиковые окна и сразу нашел место, откуда дует, т. к. там плохой уплотнитель.
Не так давно инфракрасная камера FLIR оказалась в центре спортивного скандала: она показала, что рама велосипеда одной из участниц велогонки подозрительно нагрета. Оказалось, что внутри был спрятан мотор, помогавший спортсменке крутить педали. Так что в этом году для выявления подобных случаев на Тур де Франс используются тепловизоры.
Что такое FLIR Lepton?
В 2014 году компания FLIR, мировой лидер в разработке тепловизионной техники, выпустила миниатюрный датчик, LWIR-сенсор, который умеет регистрировать инфракрасные волны в диапазоне 8–14 мкм. Именно на этот диапазон приходится максимум излучения тел с температурой от –50 до +50 градусов Цельсия. (Но это не означает, что более горячие тела, например, чайник, не будут видны в этом тепловизоре).
Датчик миниатюрный, обеспечивает тепловое разрешение 80 х 60 пикселей с частотой обновления в 9 Гц. Интерфейс получения данных — Video over SPI, а управления — I2C. Оба интерфейса поддерживаются Raspberry Pi, поэтому у DIY-энтузиастов сразу возникла мысль, что можно сделать из Lepton тепловизор.
В 2014 году FLIR еще не работала с DIY-сообществом, поэтому мы собрались на groupgets.com и заказали оптом партию в 100 штук. Случилось это перед обвалом рубля, так что мне датчик достался довольно дешево. К сожалению, цены на такую технику довольно высоки. Сам датчик стоил 250 долларов, на тот момент это меньше 10 000 руб. Сейчас тепловизор такого же разрешения стоит в магазине ~40 000 руб.
Кроме того, Lepton стоит в модуле Flir One для смартфонов (~25 000 рублей).
Тепловой след от руки на столе
Lepton способен уловить излучение и далеких объектов с улицы
Собираем тепловизор
Ребята из компании Pure Engineering сделали для FLIR Lepton breakout board, которая подключается в т. ч. и к Raspberry Pi, который работает с ней по I2C и SPI.
Изображение выводится на маленький LCD-монитор для автомобиля через RCA-разъем.
Также я добавил к своему устройству обычную камеру для Raspberry Pi со спиленным инфракрасным фильтром (NoIR), чтобы она видела в темноте.
Тепловизионная техника работает в ИК-диапазоне, поэтому ей нужна особая оптика. Например, для нашего устройства желательно купить защитное стекло, но обычное не подойдет, потому что оно непрозрачно для ИК-лучей. Нужно покупать специальную оптику на основе селенида цинка (ZnSe), германия (Ge) или арсенида галлия (GaAs). Кроме того, продаются и фокусирующие линзы.
Корпусирование и батарейное питание
Всех, кому приходилось делать портативные устройства, мучил вопрос изготовления корпуса. Альфа-версия у меня была в картонной коробке. Очень удобно: можно прорезать дырки, где хочешь. Внутри была очень большая батарея. Если такой аппарат уронить на ногу, будет очень больно.
Финальный вариант задумывался в портативной компоновке типа «пистолет». Так как в продаже подобных корпусов нет, я попросил друга сделать модель удобной ручки, а коллега ее распечатал на 3D-принтере. В ручку я поместил батарею, а для электроники был взят готовый пластиковый прямоугольный корпус.
Аккумулятор должен был обеспечивать продолжительную работу, в т. ч. и зимой на улице. И хотелось, чтобы его было удобно заряжать — по этому критерию лучше всего литий-полимерные аккумуляторы, к ним продается множество готовых модулей зарядки от USB. Но для тех Li-Po, что я видел в продаже, указан рабочий диапазон температур от 0 °C, т. е. они не выдерживают сильный мороз.
Кроме Li-Po существуют Pb, NiMh, NiCd и LiFePO4 аккумуляторы. Пальчиковые аккумуляторы я брать не хотел, т. к. это бы усложнило конструкцию ручки — пришлось бы делать отсек со съемными батареями и крышечкой. Из оставшихся вариантов я выбрал небольшую свинцовую батарею на 6 В. К ней пришлось добавить понижающие конвертеры до 5 В, чтобы питать Raspberry, и повышающие конвертеры до 12 В для питания экрана.
Режимы съемки
Типовые режимы картинки для тепловизоров:
- обычные оттенки серого: чем светлее, тем горячее;
- красно-синяя палитра, где красный — горячо, синий — холодно;
Чайник закипает на газовой плите
Библиотеки
Комьюнити уже написало библиотеки под различные платформы, в том числе STM32, Raspberry Pi, Arduino. Я начал писать код на С, но это довольно тяжелое занятие, поэтому сейчас я перехожу на библиотеку Python, которая использует OpenCV. Там все гораздо проще, и уже есть готовые примеры с тем же overlay. Так что я рекомендую именно Python.
Итак, наш тепловизор умеет снимать и сохранять изображения на диск. Чтобы их скачать, я поставил hostapd, isc-dhcp-server и PureFTPd, превратив этот прибор еще и в точку доступа Wi-Fi, чтобы к нему можно было подключиться и скачать картинки.
Измерение температуры
На скриншотах с моего тепловизора нет шкалы температур. Почему? Дело в том, что в первой версии Lepton есть сложность с режимом измерения (т. н. radiometry) — нужно калибровать датчик относительно известной температуры, что штатно делается замером температуры специальной шторки перед Lepton. Но в моей (первой) версии модуля нет такой шторки. (Кстати, если вы задумаете покупать Lepton, то сейчас его логично брать сразу со шторкой).
Кроме того, в нашей технической бочке меда есть физическая ложка дегтя. Закон Стефана Больцмана гласит, что для абсолютно черного тела испускательная способность пропорциональна четвертой степени его температуры. Однако обычные предметы не являются абсолютно черными телами, и для них вводится коэффициент ε от 0 до 1.
Q = εσT 4 , где ε — emissivity, коэффициент излучения или степень черноты
Иными словами разные материалы одинаковой температуры могут излучать с разной интенсивностью. Например, при одинаковой температуре дерево будет излучать мощнее, чем сталь — за счет большего коэффициента emissivity. И на экране нашего тепловизора дерево будет как будто «теплее». Отчасти это можно компенсировать, указав прибору коэффициент emissivity, если он известен. Но для каждого объекта в кадре это сделать проблематично.
Пример из Википедии. Окрашенная сторона (ε≈0.45) алюминиевого куба выглядит теплее полированной (ε≈0.05) на термальном снимке
То же самое касается ИК-термометров (пирометров). Когда вы что-то меряете ими, то для точной оценки температуры нужно выставить поправочный коэффициент.
Кроме того, точному измерению мешает зависимость интенсивности излучения от угла, отражающая способность материала и так далее. Так что такой тепловизор, к сожалению, не показывает точную температуру. Есть модели с отображением температуры, но и они требуют ввода коэффициента emissivity.
Дальнейшее развитие
Проект с тепловизором еще далек от завершения. Как всегда, есть масса идей:
- вынести на потенциометры подстройки. В Raspberry Pi нет аналоговых входов, поэтому надо ставить дополнительно АЦП. Также с его помощью хочу контролировать разряд батареи;
- добавить лазерный указатель;
- сделать ИК-подсветку для обычной камеры;
- так как я теперь использую OpenCV, можно использовать что-то из него, например, добавить отслеживание контуров объектов на экране.
Ссылки
- Google-группа FLIR Lepton
- github.com/groupgets/LeptonModule
- github.com/groupgets/pylepton
- Dev Kit
- версия со шторкой
Источник: habr.com
Делаем небюджетный тепловизор своими руками
Кто из посмотревших фильм «Хищник» не мечтал обладать термальным зрением как инопланетный охотник? В наше время это не сложно, но достаточно дорого: не каждый может позволить себе купить тепловизор, хотя в последнее десятилетие, с развитием технологий, они стали гораздо доступнее. Одним из многих проектов на ардуино, которым я был очарован и вовлечен в удивительный мир микроконтроллеров, был как раз тепловизор, если его можно так назвать. Устройство на основе однопиксельного бесконтактного датчика температуры и системы механической развертки хотя меня и сильно впечатлило, но я так и не повторил его, так как, честно сказать, скорость его работы совсем не впечатляла. К слову сказать, датчик MLX90614, использованный в том проекте, достаточно дорогой (по стоимости за пиксель) по сравнению с теми, речь о которых пойдет дальше.
Disclaimer
Топик должен был называться «делаем бюджетный тепловизор», но за то время, пока у меня не доходили до него руки, ситуация изменилась и он стал весьма небюджетным. О текущих ценах на комплектующие в конце статьи.
Тема тепловизоров меня захватила и я всегда с интересом следил за новостями в этой области электроники. Очевидно, чтобы не использовать систему механической развертки нужен датчик большего разрешения, я составил для себя список таких датчиков, но многие из них были недоступны для покупки.
Еще недавно на просторах интернета можно было встретить истории, что продавец отказывался отправлять подобные датчики в нашу страну, считая их устройством двойного назначения. Когда же в свободной продаже на Aliexpress появился модуль с датчиком AMG8833, а в сети появились проекты с его использованием, я не смог противостоять желанию получить его, хотя стоимость и превышала почти вдвое ежемесячный лимит, отведенный мною на покупки. Датчик был приобретен за 37$ (сейчас его можно купить за 28$). Конечно разрешение у сенсора очень низкое для какого бы то ни было практического использования в качестве тепловизора, но его достаточно, чтобы получить массу восторга, впервые взглянув на мир «глазами хищника».
«селфи» снятое на AMG8833
Вдоволь поэкспериментировав с AMG8833, я отложил его для будущего использования и стал думать о большем. Ведь все на том же Aliexpress в продаже появились модули на базе сенсора MLX90640 с разрешением 32*24 и ценой в 60-70$. С таким разрешением возможно использовать его для каких то практических целей, ну и конечно поиграть серьезнее.
Особенности MLX90640:
— Диапазон рабочих температур от -40 до 85 ° C, позволяет использовать в сложных промышленных условиях
— Может измерять температуру объекта от -40 до 300 ° C
— Типичная точность измерения температуры целевого объекта 1 °, точность по всей шкале измерения
— NETD всего 0,1K RMS при частоте обновления 1 Гц
— Не требуется повторная калибровка для конкретных температурных требований, что обеспечивает большее удобство и снижает эксплуатационные расходы
— Два варианта поля зрения (FoV): стандартное (MLX90640BAB) 55 ° x35 ° и широкоугольное (MLX90640BAA) 110 ° x75 ° Матрица с широкоугольным полем зрения обладает меньшим шумом и большей точностью измерения.
— 4-контактный корпус TO39 с необходимой оптикой
— Цифровой интерфейс, совместимый с I²C, упрощающий интеграцию
Отдельно датчик можно было приобрести примерно за 55-60$ в зависимости от версии. Но мне интереснее модули с обвязкой. Есть несколько вариантов таких модулей:
1. Модули, включающие сам сенсор и его обвязку для питания и работы с микроконтроллером по шине I2C.
2. Модули для платформы M5STACK/M5STICK, такие модули содержат необходимую обвязку для питания сенсора и работы с микроконтроллером по шине I2C.
3. Модули с микроконтроллером, реализующим UART интерфейс. Для работы с таким модулем можно обойтись без внешнего микроконтроллера, подключив его к ПК через USB-UART конвертер, я встречал 2 варианта таких модулей. Программное обеспечение для ПК позволяет визуализировать исходное тепловое изображение с сенсора или с программной интерполяцией.
4. Следующим вариантом развития модулей с микроконтроллером являются модули, в которых реализован USB интерфейс и которые можно напрямую подключать к ПК, при этом сохранен UART интерфейс и доступна шина I2C самого сенсора. Для доступа к сенсору по I2C нужно замкнуть конденсатор сброса (который еще нужно найти).
5. Наконец последним вариантом является модуль Red Eye Camera, в котором также реализован USB интерфейс, но, насколько я понял, нет возможности получить сырые данные с сенсора по I2C, при этом доступен UART. Судя по картинкам на странице товара для данного модуля есть ПО для Android.
Мне хотелось иметь возможность для взаимодействия с сенсором по I2C, поэтому я выбрал модуль под номером 4, в котором есть эта возможность, а также реализован USB интерфейс. Со всевозможными скидками на распродаже 11.11.2019 г. этот модуль был приобретен за 54,31$.
Такой довольно дорогой модуль поставлялся в упаковке без какой бы то ни было защиты, к счастью не пострадал. Размеры модуля 28*15 мм.
К сожалению, не удалось найти никакой другой информации о данном модуле кроме представленной на странице товара: ни схемы, ни ПО. На модуле указано его название, версия и дата — «mlx_module v3.1.0 20190608. Но поиск по данному обозначению не дал никаких результатов. У всех продавцов одни и те же фото и описание товара.
Я не терял надежды, что драйвера под Windows найдутся автоматически, но чуда не произошло. При подключении в диспетчере устройств появилось новое неизвестное устройство с com-портом, после поиска драйверов оно было идентифицировано как трекбол, но драйвера не были правильно установлены. При этом в системе еще появляется com-порт. Я попытался использовать ПО от аналогичного модуля без usb, но безрезультатно: видимо протоколы обмена данными через UART у этих модулей отличаются. При последующих подключениях оно вообще не обнаруживалось.
Остался второй вариант использования данного модуля – подключение непосредственно к сенсору по шине I2C. Для этого, согласно информации на странице товара, необходимо замкнуть конденсатор сброса. Осталось найти его на плате среди десятка конденсаторов.
На плате установлены следующие компоненты:
— микроконтроллер STM32F301K6;
— USB-UART конвертер CH340;
— стабилизатор напряжения;
— кварцевый резонатор;
— резисторы и конденсаторы.
Вид сверху.
Вид снизу.
Чтобы найти нужный конденсатор, пришлось изучить даташит на микроконтроллер STM32F301K6 и прозвонить саму плату. Конденсатор, подключенный к пину reset микроконтроллера STM32, выделен на фотографии красным. Потребовалась довольно тонкая работа, чтобы замкнуть его с помощью кусочка провода МГТФ.
Я проверил несколько примеров работы сенсора с ESP32. Для итоговой реализации я использовал в качестве управляющей платформы TTGO T-Watch, о которой можно узнать из моих обзоров: раз, два. Для подключения сенсора к T-Watch я использовал прото-шилд для Wemos D1 mini и угловые штырьковые гребенки. Получилось довольно компактно, конечно, корпус бы не помешал. Взяв за основу данный проект, я переделал его под TTGO T-Watch, а также добавил интерполяцию и возможность сохранения фотографий на microSD.
Пример сохраненных фото с «тепловизора».
Ещё несколько примеров фотографий
Фотографии сделаны до реализации интерполяции в разрешении 32*24 пикселей. А на видео уже пример работы с интерполяцией, с разрешением 64*48. Частота кадров составляет всего 4 кадра в секунду она зависит от частоты опроса датчика и задается программно, частоту можно увеличить до 32 при этом увеличится погрешность измерений.
Дополнительная информация
Я так же проверил работу сенсора MLX90640 c OpenMV
Несмотря на столь небольшое разрешение сенсора MLX90640 его вполне можно использовать для множества целей:
— поиск утечек тепла в доме, при утеплении лоджии проверено на личном опыте;
— поиск греющихся элементов на плате, конечно самые мелкие детали будут неразличимы, но тем не менее такой инструмент может быть полезен;
— контроль присутствия людей, там где нет возможности использовать видеокамеру, человека можно заметить с расстояния порядка 10 м;
— пожарная безопасность;
Функции и улучшения, которые я хотел бы добавить к «тепловизору»:
— переделать проект под большой дисплей с тачскрином;
— добавить поддержку LVGL и сделать красивый дизайн с меню;
— увеличить разрешение сохраняемых изображений;
— добавить возможность потоковой трансляции изображения по Wi-Fi.
Я хочу также реализовать следующие проекты на основе сенсора MLX9040:
— Мобильный тепловизор на основе ESP32.
— Мобильный тепловизор для андроид.
— Радиоуправляемый робот с термальным зрением.
— Камера наблюдения с режимом термальной съемки.
— Тепловизор с детектором лиц на базе kendryte k210.
— Шлем виртуальной реальности или очки с термокамерой.
P.S.S.
В следствие пандемии коронавируса цены на сенсор MLX90640 взлетели в несколько раз. На Aliexpress можно найти модуль примерно за 200$. В конце 2019 г. компания Sipeed обещала выпустить в скором времени модуль термокамеры с разрешением 32*32 на базе сенсора от Heimann за ~ 50$, но опять же из-за пандемии этим обещаниям не суждено было сбыться. Надеюсь в будущем ситуация улучшится.
Добавить в избранное Понравилось +162 +254
- 18 декабря 2020, 15:42
- автор: Lucky13
- просмотры: 31893
Источник: mysku.me
Тепловизор своими руками из фотоаппарата
Наверное, многие смотрели фильм «Хищник» и немного завидовали способности видеть тепловое излучение, как пресловутый инопланетянин. Оказывается, не только на охоте можно пользоваться этой фишкой, а ещё во многих сферах производства и медицины. И не такое уж дорогое это удовольствие — тепловизор, а смастерить его своими руками можно даже из фотоаппарата а-ля мыльница. Как это сделать, и где девайс можно применить — тема сегодняшней статьи.
Для чего можно использовать тепловизор
Помимо спецэффектов в фантастических фильмах, прибор находит следующее применение:
- контроль утечки энергоресурсов —поскольку при плохом контакте происходит нагрев проводников, тепловизор даёт возможность легко выявить эту проблему;
- оценка теплоизоляционных свойств строящихся зданий;
- в качестве альтернативы прибора ночного видения — для обнаружения живой силы и техники противника;
- у спасателей — для обнаружения очагов возгорания, поиска людей, возможных выходов из помещений и оценки обстановки;
- в медицине — для идентификации в толпе людей с повышенной температурой и для выявления патологий организма, в том числе онкологических очагов;
- в металлургии и машиностроении — для получения представления о неоднородности нагревания объектов.
Помимо перечисленного, тепловизор находит применение в астрономических телескопах, при ветеринарном контроле и в системах ночного вождения. Словом, спектр его применения точно не ограничивается охотой.
Принцип работы прибора
Не вдаваясь в дебри физики, поведаю: все тела температурой выше абсолютного нуля излучают тепло. В среднем инфракрасном диапазоне (7-14 мкм), не видимом человеческим глазом, максимальная степень излучения у тел температурой от -50 до +50 градусов. На дисплее тепловизора отражается цветная картинка перепада температур изучаемой поверхности. Градация цвета происходит в диапазоне цветов радуги от фиолетового к красному, в зависимости от степени нагрева поверхности.
Для некоторых производственных процессов интересны температуры в несколько сотен градусов. Длина волны у излучения в этом спектре меньше — 3-7 мкм. Но по принципу действия используемые для замеров приборы, независимо от рабочих температур, полностью идентичны.
Если тело имеет температуру порядка тысячи градусов, вспомогательные девайсы уже не нужны, свечение видно невооружённым глазом.
Работа прибора включает три основных этапа:
- регистрация излучения в инфракрасном диапазоне;
- преобразование зафиксированных данных в цифровые значения;
- вывод на дисплей полученной термограммы, то есть тепловой карты поверхности наблюдаемого объекта.
Современные устройства позволяют производить такие преобразования и получать изображения практически без задержки, в реальном времени.
Как переделать фотоаппарат в тепловизор
Вообще-то, переделывать ничего особо и не придётся. Изначально матрица фотоаппарата воспринимает инфракрасное излучение. Другое дело, что заводы-изготовители ставят в них так называемые тепловые фильтры, которые отражают либо поглощают попадающее на их поверхность ИК-излучение.
По-другому этот фильтр называют тепловое зеркало, в буржуйском исполнении — «hot mirror». В результате воспринимаемый матрицей фотоаппарата спектр становится примерно идентичным тому, что видит человеческий глаз.
Если извлечь из фотоаппарата ИК-фильтр, он начнёт работать как тепловизор. Можно (но не обязательно) установить вместо него фильтр видимого спектра. Как показывает практика, особой роли он не играет и на работу прибора влияния практически не оказывает.
Помимо фотоаппарата, подопытными (или жертвами — как процесс пойдет) для изготовления чудо-девайса могут послужить:
Описывать технологию их переделки не буду, поскольку это уже совсем другая история. Да и технология доработки сложнее, а затрат — на порядок больше.
Источник: setafi.com