Как работает реактор атомной лодки

В отличии, к примеру, от автомобиля, рассчитанного на несколько видов бензина, каждому виду радиоактивного топлива соответствует свой тип реактора. Их два – на медленных (с U-235) и быстрых (c U-238 и Pu) нейтронах. На большинстве АЭС установлены реакторы на медленных нейтронах. Помимо АЭС, установки «трудятся» в исследовательских центрах, на атомных субмаринах и опреснителях морской воды.

Как устроен реактор

У всех реакторов примерна одна схема. Его «сердце» — активная зона. Ее можно условно сравнить с топкой обычной печки. Только вместо дров там находится ядерное топливо в виде тепловыделяющих элементов с замедлителем – ТВЭЛов. Активная зона находится внутри своеобразной капсулы — отражателе нейтронов.

ТВЭЛы «омываются» теплоносителем – водой. Поскольку в «сердце» очень высокий уровень радиоактивности, его окружает надежная радиационная защита.

Как работает реактор

Атомное «пламя» невидимо, так как процессы происходят на уровне деления ядер. В ходе цепной реакции тяжелые ядра распадаются на более мелкие фрагменты, которые, будучи в возбужденном состоянии, становятся источниками нейтронов и прочих субатомных частиц. Но на этом процесс не заканчивается. Нейтроны продолжают «дробиться», в результате чего высвобождается большая энергия, то есть, происходит то, ради чего и строятся АЭС.

Корпус ядерного реактора | Как это устроено? | Discovery

Основная задача персонала – поддержание цепной реакции с помощью управляющих стержней на постоянном, регулируемом уровне. В этом его главное отличие от атомной бомбы, где процесс ядерного распада неуправляем и протекает стремительно, в виде мощнейшего взрыва.

Начало работы реактора

В начальный момент времени после первой загрузки топливом, цепная реакция деления в реакторе отсутствует, реактор находится в подкритическом состоянии . Температура теплоносителя значительно меньше рабочей.

Для начала цепной реакции делящийся материал должен образовать критическую массу, — достаточное количество спонтанно расщепляющегося вещества в достаточно небольшом пространстве, условие, при котором число нейтронов, выделяющихся при делении ядер должно быть больше числа поглощенных нейтронов.

Вывод реактора на мощность осуществляется в несколько этапов.

С помощью органов регулирования реактивности реактор переводится в надкритическое состояние Кэф>1 и происходит рост мощности реактора до уровня 1-2 % от номинальной. На этом этапе производится разогрев реактора до рабочих параметров теплоносителя причем скорость разогрева ограничена. В процессе разогрева органы регулирования поддерживают мощность на постоянном уровне.

Затем производится пуск циркуляционных насосов и вводится в действие система отвода тепла. После этого мощность реактора можно повышать до любого уровня в интервале от 2 — 100 % номинальной мощности.

При разогреве реактора реактивность меняется, в виду изменения температуры и плотности материалов активной зоны. Иногда при разогреве меняется взаимное положение активной зоны и органов регулирования, которые входят в активную зону или выходят из нее, вызывая эффект реактивности при отсутствии активного перемещения органов регулирования.

Реактор ВВЭР 1000. 1 — привод СУЗ; 2 — крышка реактора; 3 — корпус реактора; 4 — блок защитных труб (БЗТ); 5 — шахта; 6 — выгородка активной зоны; 7 — топливные сборки (ТВС) и регулирующие стержни;

Типы реакторов

Большинство существующих в мире ядерных установок являются энергетическими, генерирующими тепло, необходимое для вращения турбин, которые приводят в движение генераторы электрической энергии. Также есть много исследовательских реакторов, а некоторые страны имеют подводные лодки или надводные корабли, движимые энергией атома.

Энергетические установки

Существует несколько видов реакторов этого типа, но широкое применение нашла конструкция на легкой воде. В свою очередь, в ней может использоваться вода под давлением или кипящая вода. В первом случае жидкость под высоким давлением нагревается теплом активной зоны и поступает в парогенератор. Там тепло от первичного контура передается на вторичный, также содержащий воду. Генерируемый в конечном счете пар служит рабочей жидкостью в цикле паровой турбины.

Реактор кипящего типа работает по принципу прямого энергетического цикла. Вода, проходя через активную зону, доводится до кипения на среднем уровне давления. Насыщенный пар проходит через серию сепараторов и сушилок, расположенных в корпусе реактора, что приводит его в сверхперегретое состояние. Перегретый водяной пар затем используется в качестве рабочей жидкости, вращающей турбину.

Высокотемпературные с газовым охлаждением

Высокотемпературный газоохлаждаемый реактор (ВТГР) – это ядерный реактор, принцип работы которого основан на применении в качестве топлива смеси графита и топливных микросфер. Существуют две конкурирующие конструкции:

  • немецкая «засыпная» система, которая использует сферические топливные элементы диаметром 60 мм, представляющие собой смесь графита и топлива в графитовой оболочке;
  • американский вариант в виде графитовых гексагональных призм, которые сцепляются, создавая активную зону.
Читайте также:  Стойка для кресла в лодку ПВХ размеры

В обоих случаях охлаждающая жидкость состоит из гелия под давлением около 100 атмосфер. В немецкой системе гелий проходит через промежутки в слое сферических топливных элементов, а в американской – через отверстия в графитовых призмах, расположенных вдоль оси центральной зоны реактора. Оба варианта могут работать при очень высоких температурах, так как графит имеет чрезвычайно высокую температуру сублимации, а гелий полностью инертен химически. Горячий гелий может быть применен непосредственно в качестве рабочей жидкости в газовой турбине при высокой температуре или его тепло можно использовать для генерации пара водяного цикла.

Жидкометаллический ядерный реактор: схема и принцип работы

Реакторам на быстрых нейтронах с натриевым теплоносителем уделялось большое внимание в 1960-1970-х годах. Тогда казалось, что их возможности по воспроизводству ядерного топлива в ближайшее время необходимы для производства топлива для быстро развивающейся атомной промышленности. Когда в 1980-е годы стало ясно, что это ожидание нереалистично, энтузиазм угас.

Однако в США, России, Франции, Великобритании, Японии и Германии построен ряд реакторов этого типа. Большинство из них работает на диоксиде урана или его смеси с диоксидом плутония. В Соединенных Штатах, однако, наибольший успех был достигнут с металлическими топливом.

Ядерные реакторы на медленных и быстрых нейтронах

В ядерных реакторах на медленных нейтронах активная зона, кроме ядерного топлива, содержит замедлитель быстрых нейтронов, образующихся при цепной реакции деления атомных ядер.

Применяют замедлители (графит), а также органические жидкости и воду, которые одновременно могут служить и теплоносителем.

Если замедлителя в активной зоне нет, то основная часть деления ядер происходит под влиянием быстрых нейтронов с энергией больше 10 кэВ.

Реактор без замедлителя – реактор на быстрых нейтронах – может стать критическим лишь при использовании природного урана, обогащенного изотопом U до концентрации около 10%.

В активной зоне реактора на медленных нейтронах расположены тепловыделяющие элементы, содержащие смесь U и U и замедлитель, в котором нейтроны замедляются до энергии около 1 эВ.

Тепловыделяющие элементы (ТВЭЛы) представляют собой блоки из делящегося материала, заключенные в герметическую оболочку, слабо поглощающую нейтроны. За счет энергии деления тепловыделяющие элементы разогреваются и отражают энергию теплоносителю, который циркулирует в каналах.

Управление цепной реакцией осуществляется специальными управляющими стержнями, изготовленными из материалов, сильно поглощающих нейтроны (например, бор, кадмий). Изменяя количество и глубину погружения управляющих стержней, можно регулировать нейтронные потоки, а следовательно, интенсивность цепной реакции и выработку энергии.

Реакторы, в которых деление ядер производится в основном нейтронами с энергией больше 0,5 МэВ, называются реакторами на быстрых нейтронах. Реакторы, в которых большинство делений происходит в результате поглощения ядрами делящихся изотопов промежуточных нейтронов, называются реакторами на промежуточных (резонансных) нейтронах.

Источник: principraboty.ru

Ядерный реактор

Станислав Субботин

Помимо контроля за количеством новообразованных нейтронов при реализации управляемой ядерной реакции возникает еще ряд проблем. А какую из перечисленных опасных ситуаций мы выдумали?

Образование ксенона, который отлично поглощает нейтроны и тем самым замедляет ход реакции
Накопление стабильного изотопа самария, который активно захватывает нейтроны и «глушит» реакцию
При разгоне реактора может возникнуть резкое увеличение реактивности
При остановке реактора остаточная реакция может привести к расплаву оболочек твэлов

mistake

Увы, вы ошиблись.

Журнал: Ядерный реактор

Визитная карточка советской ядерной энергетики — РБМК (реактор большой мощности канальный). Это канальный реактор с графитовым замедлителем и легкой водой в качестве теплоносителя, который работает на топливе из двуокиси урана. Мощность реактора РБМК-1000 составляет 1 ГВт, РБМК-1500 — 1,5 ГВт. Существовали проекты реакторов этого типа большей мощности, однако они не были реализованы.

РБМК был создан по подобию промышленных реакторов, нарабатывавших плутоний. Активная зона РБМК набрана из графитовых блоков размером 25 на 25 сантиметров. В каждом из блоков проделан канал, в котором размещается тепловыделяющий блок с твэлами. Каждый тепловыделяющий блок индивидуально охлаждается водой, которая нагревается до кипения и частично испаряется.

Циркуляция теплоносителя осуществляется в контуре многократной принудительной циркуляции (КМПЦ). Пароводяная смесь отводится через верхние части каналов и пароводяную коммуникацию, подается в сепараторы, которые разделяют сухой пар 15 и воду. Вода возвращается обратно в активную зону реактора, а пар подается на турбину электрогенератора, где превращается в конденсат, и возвращается обратно в КМПЦ. Так как в РБМК вода закипает, в нем не требуется поддерживать высокое давление: в его каналах давление всего 70 атмосфер.

Читайте также:  Моторная лодка развивает скорость 4 м с за какое

Недостаток РБМК, заложенный в самой его конструкции, — дисбаланс между количеством графита (замедлителя) и воды (поглотителя нейтронов). Изначально графитовые блоки планировали сделать размером 20 на 20 сантиметров, но не хватало места, чтобы подвести в такой жесткой конструкции разводку для каждого блока. Тогда было решено сделать их чуть больше. В результате графита оказалось больше, а воды — меньше, что повысило вероятность возникновения аварийных ситуаций с вводом положительной реактивности при опустошении первого контура и ухода воды из каналов.

В процессе эксплуатации графитовая кладка постепенно деформируется и распухает под действием радиации. Один из возможных способов сделать РБМК более безопасными — модернизировать кладку, сделав ее не из цельных блоков, а, например, из маленьких шариков и убрав из нее избыток графита. Вторая жизнь реакторов канального типа // Атомный эксперт

Сегодня РБМК постепенно выводят из эксплуатации. До 2030 года в России планируется остановить 18 энергоблоков, в основном с реакторами РБМК. «Росэнергоатом» создаст центр по выводу из эксплуатации энергоблоков с реакторами РБМК // Страна РОСАТОМ. 23 июля 2020

В современной ядерной энергетике важную роль играют корпусные водо-водяные реакторы. В России это ВВЭР (водо-водяные энергетические реакторы), в других странах похожие реакторы называют PWR. На них приходится 60% мощностей всех реакторов мира. ВВЭР были созданы во многом благодаря реакторным установкам для атомных подводных лодок, на которых в качестве теплоносителя и замедлителя тоже используется вода.

Реактор ВВЭР-1000, самый распространенный в своей серии, представляет собой вертикальный цилиндрический герметичный сосуд из стали с крышкой, внутри которого располагается активная зона и внутрикорпусные устройства. Корпус реактора выдерживает очень жесткие условия: высокое давление, температуру и скорость движения теплоносителя, а также мощные потоки радиации. В активной зоне реактора размещается 163 шестигранные 18 тепловыделяющие сборки, каждая из которых состоит из 312 твэлов Как делают ядерное топливо для Белорусской АЭС // Атомная энергия 2.0

«>19. На крышке реактора размещены приводы системы управления и защиты — в частности, поглощающих стержней, которые объединены в пучки и вводятся в активную зону реактора.

Реакторы ВВЭР работают по двухконтурной схеме. Через реактор циркулирует обычная вода, очищенная от примесей. Проходя через активную зону и омывая твэлы, она нагревается до 320 °C, и, чтобы она оставалась в жидком состоянии, ее приходится держать под давлением 160 атмосфер. Нагретая вода попадает в парогенератор, где отдает тепло воде второго контура, и затем снова закачивается в реактор. Вода второго контура превращается в парогенераторе в пар, который вращает турбину электрогенератора.

Кроме поглощающих стержней для контроля реактивности в реакторах ВВЭР используется борное регулирование. Борная кислота, которая выступает в качестве жидкого поглотителя нейтронов, подается в циркулирующую через активную зону воду первого контура. Ее концентрация изменяется в ходе работы реактора в зависимости от требований к реактивности. В начале работы у реактора большой запас реактивности, и, чтобы его компенсировать, требуется большая концентрация борной кислоты, а по мере выгорания топлива размножающие способности реактора ухудшаются, и борную кислоту постепенно выводят из раствора.

Источник: postnauka.org

Все слышали но ни кто не знает . Как работает ядерный (атомный) реактор

Содержание
1 История создания атомного реактора
2 Принцип работы ядерного (атомного) реактора
3 Как запускают ядерный реактор?

Ядерный реактор работает слаженно и четко. Иначе, как известно, будет беда. Но что там творится внутри? Попытаемся сформулировать принцип работы ядерного (атомного) реактора кратко, четко, с остановками.

По сути, там творится тот же процесс, что и при ядерном взрыве. Только вот взрыв происходит очень быстро, а в реакторе все это растягивается на длительное время. В итоге все остается целым и невредимым, а мы получаем энергию. Не столько, чтобы все вокруг сразу разнесло, но вполне достаточную для того, чтобы обеспечить электричеством город.

как работает реактор

как работает реакторГрадирни АЭС
Прежде чем понять, как идет управляемая ядерная реакция, нужно узнать, что такое ядерная реакция вообще.

Ядерная реакция – это процесс превращения (деления) атомных ядер при взаимодействии их с элементарными частицами и гамма-квантами.

Ядерные реакции могут проходить как с поглощением, так и с выделением энергии. В реакторе используются вторые реакции.

Читайте также:  Лодка апачи нднд 3500 характеристики

Ядерный реактор – это устройство, назначением которого является поддержание контролируемой ядерной реакции с выделением энергии.

Часто ядерный реактор называют еще и атомным. Отметим, что принципиальной разницы тут нет, но с точки зрения науки правильнее использовать слово «ядерный». Сейчас существует множество типов ядерных реакторов. Это огромные промышленные реакторы, предназначенные для выработки энергии на электростанциях, атомные реакторы подводных лодок, малые экспериментальные реакторы, используемые в научных опытах. Существуют даже реакторы, применяемые для опреснения морской воды.

как работает реактор аэс

История создания атомного реактора

Первый ядерный реактор был запущен в не таком уж и далеком 1942 году. Произошло это в США под руководством Ферми. Этот реактор назвали «Чикагской поленницей».

В 1946 году заработал первый советский реактор, запущенный под руководством Курчатова. Корпус этого реактора представлял собой шар семи метров в диаметре. Первые реакторы не имели системы охлаждения, и мощность их была минимальной. К слову, советский реактор имел среднюю мощность 20 Ватт, а американский – всего 1 Ватт.

Для сравнения: средняя мощность современных энергетических реакторов составляет 5 Гигаватт. Менее чем через десять лет после запуска первого реактора была открыта первая в мире промышленная атомная электростанция в городе Обнинске.

первый ядерный реактор

Принцип работы ядерного (атомного) реактора

У любого ядерного реактора есть несколько частей: активная зона с топливом и замедлителем, отражатель нейтронов, теплоноситель, система управления и защиты. В качестве топлива в реакторах чаще всего используются изотопы урана (235, 238, 233), плутония (239) и тория (232). Активная зона представляет собой котел, через который протекает обычная вода (теплоноситель).

Среди других теплоносителей реже используется «тяжелая вода» и жидкий графит. Если говорить про работу АЭС, то ядерный реактор используется для получения тепла. Само электричество вырабатывается тем же методом, что и на других типах электростанций — пар вращает турбину, а энергия движения преобразуется в электрическую энергию.

Приведем ниже схему работы ядерного реактора.

схема работы ядерного реактора

схема работы ядерного реактораСхема ядерного реактора на АЭС

Как мы уже говорили, при распаде тяжелого ядра урана образуются более легкие элементы и несколько нейтронов. Образовавшиеся нейтроны сталкиваются с другими ядрами, также вызывая их деление. При этом количество нейтронов растет лавинообразно.

Здесь нужно упомянуть коэффициент размножения нейтронов. Так, если этот коэффициент превышает значение, равное единице, происходит ядерный взрыв. Если значение меньше единицы, нейтронов слишком мало и реакция угасает. А вот если поддерживать значение коэффициента равным единице, реакция будет протекать долго и стабильно.

принцип работы атомного реактора

Вопрос в том, как это сделать? В реакторе топливо находится в так называемых тепловыделяющих элементах (ТВЭЛах). Это стержни, в которых в виде небольших таблеток находится ядерное топливо. ТВЭЛы соединены в кассеты шестигранной формы, которых в реакторе могут быть сотни.

Кассеты с ТВЭЛами располагаются вертикально, при этом каждый ТВЭЛ имеет систему, позволяющую регулировать глубину его погружения в активную зону. Помимо самих кассет среди них располагаются управляющие стержни и стержни аварийной защиты. Стержни изготовлены из материала, хорошо поглощающего нейтроны. Так, управляющие стержни могут быть опущены на различную глубину в активной зоне, тем самым регулируя коэффициент размножения нейтронов. Аварийные стержни призваны заглушить реактор в случае чрезвычайной ситуации.

Как запускают ядерный реактор?

С самим принципом работы мы разобрались, но как запустить и заставить реактор функционировать? Грубо говоря, вот он — кусок урана, но ведь цепная реакция не начинается в нем сама по себе. Дело в том, что в ядерной физике существует понятие критической массы.

Ядерное топливо

Ядерное топливоЯдерное топливо

Критическая масса – это необходимая для начала цепной ядерной реакции масса делящегося вещества.

При помощи ТВЭЛов и управляющих стержней в ректоре сначала создается критическая масса ядерного топлива, а потом реактор в несколько этапов выводится на оптимальный уровень мощности.

Вам понравится: Математические штучки-фокусы для студентов-гуманитариев и не очень (Часть 1)
В данной статье мы постарались дать Вам общее представление об устройстве и принципе работы ядерного (атомного) реактора. Если у Вас остались вопросы по теме или в университете задали задачу по ядерной физике – обращайтесь к специалистам нашей компании. Мы, как обычно, готовы помочь Вам решить любой насущный вопрос по учебе. А пока мы этим занимаемся, Вашему вниманию очередное образовательное видео!

Источник: pastuh83.livejournal.com

Рейтинг
( Пока оценок нет )
Загрузка ...