Плавление — это процесс превращения вещества из твёрдого состояния в жидкое.
Наблюдения показывают, что если измельчённый лёд, имеющий, например, температуру 10 °С, оставить в тёплой комнате, то его температура будет повышаться. При 0 °С лёд начнет таять, а температура при этом не будет изменяться до тех пор, пока весь лёд не превратится в жидкость. После этого температура образовавшейся изо льда воды будет повышаться.
Это означает, что кристаллические тела, к которым относится и лед, плавятся при определённой температуре, которую называют температурой плавления . Важно, что во время процесса плавления температура кристаллического вещества и образовавшейся в процессе его плавления жидкости остаётся неизменной.
В описанном выше опыте лёд получал некоторое количество теплоты, его внутренняя энергия увеличивалась за счёт увеличения средней кинетической энергии движения молекул. Затем лёд плавился, его температура при этом не менялась, хотя лёд получал некоторое количество теплоты. Следовательно, его внутренняя энергия увеличивалась, но не за счёт кинетической, а за счёт потенциальной энергии взаимодействия молекул. Получаемая извне энергия расходуется на разрушение кристаллической решетки. Подобным образом происходит плавление любого кристаллического тела.
С точки зрения науки «ТАЯНИЕ ЛЕДНИКОВ» National Geographic
Аморфные тела не имеют определённой температуры плавления. При повышении температуры они постепенно размягчаются, пока не превратятся в жидкость.
Кристаллизация
Кристаллизация — это процесс перехода вещества из жидкого состояния в твёрдое состояние. Охлаждаясь, жидкость будет отдавать некоторое количество теплоты окружающему воздуху. При этом будет уменьшаться её внутренняя энергия за счёт уменьшения средней кинетической энергии его молекул. При определённой температуре начнётся процесс кристаллизации, во время этого процесса температура вещества не будет изменяться, пока всё вещество не перейдет в твёрдое состояние. Этот переход сопровождается выделением определённого количества теплоты и соответственно уменьшением внутренней энергии вещества за счёт уменьшения потенциальной энергии взаимодействия его молекул.
Таким образом, переход вещества из жидкого состояния в твёрдое состояние происходит при определённой температуре, называемой температурой кристаллизации. Эта температура остаётся неизменной в течение всего процесса плавления. Она равна температуре плавления этого вещества.
На рисунке приведён график зависимости температуры твёрдого кристаллического вещества от времени в процессе его нагревания от комнатной температуры до температуры плавления, плавления, нагревания вещества в жидком состоянии, охлаждения жидкого вещества, кристаллизации и последующего охлаждения вещества в твёрдом состоянии.
Удельная теплота плавления
Различные кристаллические вещества имеют разное строение. Соответственно, для того, чтобы разрушить кристаллическую решётку твёрдого тела при температуре его плавления, необходимо ему сообщить разное количество теплоты.
Таяние арктического льда аукнется в тропической зоне Тихого Океана
Удельная теплота плавления — это количество теплоты, которое необходимо сообщить 1 кг кристаллического вещества, чтобы превратить его в жидкость при температуре плавления. Опыт показывает, что удельная теплота плавления равна удельной теплоте кристаллизации .
Удельная теплота плавления обозначается буквой λ . Единица удельной теплоты плавления — [λ] = 1 Дж/кг .
Значения удельной теплоты плавления кристаллических веществ приведены в таблице. Удельная теплота плавления алюминия 3,9*10 5 Дж/кг. Это означает, что для плавления 1 кг алюминия при температуре плавления необходимо затратить количество теплоты 3,9*10 5 Дж. Этому же значению равно увеличение внутренней энергии 1 кг алюминия.
Чтобы вычислить количество теплоты Q , необходимое для плавления вещества массой m , взятого при температуре плавления, следует удельную теплоту плавления λ умножить на массу вещества: Q = λm .
Эта же формула используется при вычислении количества теплоты, выделяющегося при кристаллизации жидкости.
Конспект урока «Плавление и кристаллизация. Удельная теплота плавления».
Процессы кристаллизации и плавления описывают одни и те же физические величины. Разница в том, что при плавлении телу требуется энергия для разрушения решетки, а при кристаллизации, наоборот, тело отдает энергию окружающей среде.
Понятие удельной теплоты кристаллизации
Под удельной теплотой кристаллизации (плавления) понимают количество энергии, высвобождаемой (потребляемой) 1 кг. вещества при переходе от жидкого состояния в твердое (и наоборот). Важно отметить, что в процессе кристаллизации (плавления) температура вещества не меняется и она уже доведена до величины, при которой возможен сам процесса.
Измеряется удельная теплота кристаллизации (плавления) в Дж/кг., обозначается буквой греческого алфавита λ. По определению:
где Q – это количество энергии, высвобождаемой (потребляемой) m килограммами вещества.
Расчет энергии при последовательных тепловых процессах
Рассмотрим процесс охлаждения m килограмм воды от температуры, например, +20°С до -10°С. Здесь мы имеем дело с тремя тепловыми процессами:
- охлаждение воды от температуры +20°С до 0°С, ∆T1 = — 20°;
- кристаллизация воды в лед при температуре 0°С;
- охлаждение льда от температуры 0°С до -10°С, ∆T2 = — 10°;
Количество высвобождаемой энергии Q равно сумме энергий в каждом из этих процессов:
где С1 и С2 – удельная теплоемкость воды и льда, соответственно. Знак «-» при Q2 означает, что идет процесс высвобождения энергии при кристаллизации.
Плавление — переход тела из кристаллического твёрдого состояния в жидкое. Плавление происходит с поглощением удельной теплоты плавления и является фазовым переходом первого рода.
Способность плавиться относится к физическим свойствам вещества
При нормальном давлении, наибольшей температурой плавления среди металлов обладает вольфрам (3422 °C), простых веществ вообще — углерод (по разным данным 3500 — 4500 °C) а среди произвольных веществ — карбид гафния HfC (3890 °C). Можно считать, что самой низкой температурой плавления обладает гелий: при нормальном давлении он остаётся жидким при сколь угодно низких температурах.
Многие вещества при нормальном давлении не имеют жидкой фазы. При нагревании они путем сублимации сразу переходят в газообразное состояние.
Рисунок 9 — Плавление льда
Кристаллизация — процесс фазового перехода вещества из жидкого состояния в твёрдое кристаллическое с образованием кристаллов.
Фазой называется однородная часть термодинамической системы отделённая от других частей системы (других фаз) поверхностью раздела, при переходе через которую химический состав, структура и свойства вещества изменяются скачками.
Рисунок 10 — Кристаллизация воды с образованием льда
Кристаллизация — это процесс выделения твёрдой фазы в виде кристаллов из растворов или расплавов, в химической промышленности процесс кристаллизации используется для получения веществ в чистом виде.
Кристаллизация начинается при достижении некоторого предельного условия, например, переохлаждения жидкости или перенасыщения пара, когда практически мгновенно возникает множество мелких кристалликов — центров кристаллизации. Кристаллики растут, присоединяя атомы или молекулы из жидкости или пара. Рост граней кристалла происходит послойно, края незавершённых атомных слоев (ступени) при росте движутся вдоль грани. Зависимость скорости роста от условий кристаллизации приводит к разнообразию форм роста и структуры кристаллов (многогранные, пластинчатые, игольчатые, скелетные, дендритные и другие формы, карандашные структуры и т. д.). В процессе кристаллизации неизбежно возникают различные дефекты.
На число центров кристаллизации и скорость роста значительно влияет степень переохлаждения.
Степень переохлаждения — уровень охлаждения жидкого металла ниже температуры перехода его в кристаллическую (твердую) модификацию. Она необходима для компенсации энергии скрытой теплоты кристаллизации. Первичной кристаллизацией называется образование кристаллов в металлах (и сплавах) при переходе из жидкого состояния в твердое.
Удельная теплота плавления (также: энтальпия плавления; также существует равнозначное понятие удельная теплота кристаллизации) — количество теплоты, которое необходимо сообщить одной единице массы кристаллического вещества в равновесном изобарно-изотермическом процессе, чтобы перевести его из твёрдого (кристаллического) состояния в жидкое (то же количество теплоты выделяется при кристаллизации вещества).
Количество теплоты при плавлении или кристаллизации: Q=mл
Испарение и кипение. Удельная теплота парообразования
Испарение — процесс перехода вещества из жидкого состояния в газообразное (пар). Процесс испарения является обратным процессу конденсации (переход из парообразного состояния в жидкое. Испарение (парообразование), переход вещества из конденсированной (твердой или жидкой) фазы в газообразную (пар); фазовый переход первого рода.
Существует более развёрнутое понятие испарения в высшей физике
Испарение — это процесс, при котором с поверхности жидкости или твёрдого тела вылетают (отрываются) частицы (молекулы, атомы), при этом Ek > Eп.
Рисунок 11 — Испарение над кружкой чая
Удельная теплота испарения (парообразования) (L) — физическая величина, показывающая количество теплоты, которое необходимо сообщить 1 кг вещества, взятому при температуре кипения, чтобы перевести его из жидкого состояния в газообразное. Удельная теплота испарения измеряется в Дж/кг.
Кипение — процесс парообразования в жидкости (переход вещества из жидкого в газообразное состояние), с возникновением границ разделения фаз. Температура кипения при атмосферном давлении приводится обычно как одна из основных физико-химических характеристик химически чистого вещества.
Кипение является фазовым переходом первого рода. Кипение происходит гораздо более интенсивно, чем испарение с поверхности, из-за образования очагов парообразования, обусловленных как достигнутой температурой кипения, так и наличием примесей.
На процесс образования пузырьков можно влиять с помощью давления, звуковых волн, ионизации. В частности, именно на принципе вскипания микрообъёмов жидкости от ионизации при прохождении заряженных частиц работает пузырьковая камера.
Рисунок 12 — Кипящая вода
Количество теплоты при кипении, испарении жидкости и конденсации пара: Q=mL
Удельной теплотой плавления называют количество теплоты, которое требуется для расплавления одного грамма вещества. Удельная теплота плавления измеряется в джоулях на килограмм и рассчитывается, как частное от деления количества теплоты на массу плавящегося вещества.
Удельная теплота плавления для разных веществ
Различные вещества имеют разную удельную теплоту плавления.
Алюминий — металл серебристого цвета. Он легко поддается обработке и широко используется в технике. Его удельная теплота плавления составляет 290 кДж/кг.
Железо — тоже металл, один из самых распространенных на Земле. Железо находит широкое применение в промышленности. Его удельная теплота плавления равняется 277 кДж/кг.
Золото — благородный металл. Оно используется в ювелирном деле, в стоматологии и фармакологии. Удельная теплота плавления золота составляет 66.2 кДж/кг.
Серебро и платина — также благородные металлы. Их используют в изготовлении ювелирных украшений, в технике и медицине. Удельная теплота составляет 101 кДж/кг, а серебра — 105 кДж/кг.
Олово представляет собой легкоплавкий металл серого цвета. Оно широко применяется в составе припоев, для изготовления белой жести и в производстве бронзы. Удельная теплота составляет 60.7 кДж/кг.
Ртуть представляет собой подвижный металл, замерзающий при температуре -39 градусов. Это — единственный из металлов, который в нормальных условиях существует в жидком состоянии. Ртуть применяется в металлургии, медицине, технике, химической промышленности. Ее удельная теплота плавления составляет 12 кДж/кг.
Лёд представляет собой твердую фазу воды. Его удельная теплота плавления равняется 335 кДж/кг.
Нафталин — органическое вещество, сходное по химическим свойствам с . Он плавится при 80 градусах и самовоспламеняется при 525 градусах. Нафталин широко используется в химической промышленности, фармацевтике, производстве взрывчатых веществ и красителей. Удельная теплота плавления нафталина составляет 151 кДж/кг.
Газы метан и пропан используются в качестве энергоносителей и служат сырьем в химической промышленности. Удельная теплота плавления метана составляет 59 кДж/кг, а — 79.9 кДж/кг.
Энергия, которую получает или теряет тело при теплопередаче, называется количеством теплоты. Количество теплоты зависит от массы тела, от разности температур тела и от рода вещества.
[Q]=Дж или калориях
1 кал – это количество теплоты, которое необходимо для нагревания 1 г воды на 1 о С.
Удельная теплоемкость – физическая величина, равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 о С.
Удельная теплоемкость воды 4200 Дж/кг о С. Это значит, что для нагревания воды массой 1 кг на 1 о С необходимо затратить 4200 Дж теплоты.
Удельная теплоемкость вещества, находящегося в различных агрегатных состояниях, различна. Так, теплоемкость льда 2100 Дж/кг о С. Удельная теплоемкость воды самая большая. В связи с этим вода в морях и океанах, нагреваясь летом, поглощает большое количество теплоты. Зимой вода остывает и отдает большое количество теплоты.
Поэтому в районах, расположенных вблизи водоемов, летом не бывает очень жарко, а зимой очень холодно. Из-за высокой теплоемкости воду широко применяют в технике и быту. Например, в отопительных системах домов, при охлаждении деталей во время их обработки на станках, медицине (грелках) и т.д.
С возрастанием температуры твердых тел и жидкостей возрастает кинетическая энергия их частиц: они начинают колебаться с большей скоростью. При некоторой температуре, вполне определенной для данного вещества, силы притяжения между частицами уже не в состоянии удержать их в узлах кристаллической решетки (дальний порядок превращается в ближний), и кристалл начинает плавиться, т.е. вещество начинает переходить в жидкое состояние.
Плавление – процесс перехода вещества из твердого состояния в жидкое.
Отвердевание (кристаллизация) – процесс перехода вещества из жидкого состояния в твердое.
В процессе плавления температура кристалла остается постоянной. Эта температура называется температурой плавления . У каждого вещества есть своя температура плавления. Находят по таблице.
Постоянство температуры при плавлении имеет большое практическое значение, поскольку позволяет градуировать термометры, изготавливать плавкие предохранители и индикаторы, которые расплавляются при строго заданной температуре. Знание температуры плавления различных веществ важно и с чисто бытовой точки зрения: в противном случае кто поручится за то, что эта кастрюля или сковородка не расплавится на огне газовой горелки?
Температура плавления и равная ей температура отвердевания — характерный признак вещества. Ртуть плавится и затвердевает при температуре -39 о С, поэтому в районах Крайнего Севера ртутные термометры не используют. Вместо ртутных термометров в этих широтах используют спиртовые (-114 о С). Самым тугоплавким металлом является вольфрам (3420 о С).
Количество теплоты, необходимое для плавления вещества, определяют по формуле:
Где m – масса вещества, — удельная теплота плавления.
Удельная теплота плавления – такое количество теплоты, которое необходимо для расплавления 1 кг вещества, взятого при температуре плавления. У каждого вещества своя. Её находят по таблице.
Температура плавления вещества зависит от давления. Для веществ, у которых объем при плавлении возрастает, повышение давления повышает температуру плавления и наоборот. У воды объем при плавлении уменьшается, и при повышении давления лед плавится при более низкой температуре.
Рекомендуем статьи по теме
Источник: goaravetisyan.ru
Как происходит таяние льда
Вещества в твёрдом состоянии плотнее, чем в жидком. Но вода — исключение.
Эта статья была опубликована в журнале OYLA №11(27). Оформить подписку на печатную и онлайн-версию можно здесь.
Физика льда
Из курса физики известно, что при нагревании тело или жидкость расширяется, то есть увеличивается в объёме, а при охлаждении сжимается. Масса остаётся такой же. А плотность, напротив, при нагреве уменьшается, при охлаждении увеличивается, так как плотность обратно пропорционально объёму:
Один литр воды при 90°С весит примерно 964 грамма. При охлаждении до четырёх градусов, сжимается в объёме до 964 мл. Посчитаем, как изменяется плотность. Масса воды не меняется в процессе охлаждения.
Плотность воды при температуре 90°С равна:
964 г / 1000 мл = 0,964 г / мл
А при температуре 4°С:
964 г / 964 мл = 1 г / мл
Чем ниже температура, тем выше плотность воды. Вспомните закон Архимеда: если плотность тела больше плотности воды, то тело тонет. Лёд — замёрзшая вода — холоднее жидкой, значит, плотность льда должна быть больше, и лёд «обязан» тонуть. Но тут не всё так просто!
Разрывающий лёд
Все жидкости при охлаждении замерзают и превращаются в твёрдое тело. Для разных жидкостей температура замерзания разная, но общее правило не нарушается: при замерзании твёрдая часть тонет в незамёрзшей жидкости. Так ведут себя практически все жидкости, кроме «непослушной» воды. Сначала вода уменьшается в объёме. Так происходит, пока температура не достигнет 4°C.
При дальнейшем охлаждении вода медленно расширяется, а при замерзании 0°C скачкообразно расширяется. В итоге объём воды увеличивается примерно на 10% — так что может разорвать ёмкость, в которой замерзает. Именно поэтому работники коммунальных служб хорошо знают, что зимой нельзя допустить появления льда в трубах с водой. Он обязательно разорвёт металлические трубы, какими бы прочными они не были.
Водородная связь ограничивает способность молекул воды образовывать плотную кристаллическую решётку. Вода кристаллизуется в относительно неплотную гексагональную кристаллическую структуру, которая содержит внутри ячеек пустоту размером с целую молекулу.
Почему катятся коньки
С наступлением зимы мы достаём коньки и готовим их к сезону катков. Обязательно относим на заточку перед катаниями. Но у новичков часто возникает вопрос: почему лезвия коньков такие узкие? Ведь на них неудобно не то что кататься, а даже стоять.Это не случайно: когда вы стоите на коньках, ваш вес через узкие лезвия коньков давит на лёд.
У коньков маленькая площадь опоры, поэтому давление на лёд — большое. При большом механическом давлении лёд под коньками тает и в этом месте появляется тонкая плёнка воды, благодаря чему коньки скользят. Но это возможно лишь тогда, когда на улице не очень холодно. При сильном морозе лёд под коньками тает плохо, поэтому кататься труднее.
Лёд для науки
Обычно вода при замерзании кристаллизуется — вспомните спаянные в красивый узор кристаллы снежинки. Учёные применяли низкие температуры, сверхбыстрое замораживание, охлаждение под большим давлением, сочетали эти «пытки» между собой. В результате получили так называемый аморфный лёд, не содержащий кристаллов. Аморфный лёд используется для замораживания биологических материалов: органов, клеток, тканей животных или человека. При обычном замораживании образующиеся кристаллы льда повреждают клетки органов и тканей.
Метод со сверхбыстрым охлаждением используют в крионике — технологии сохранения в состоянии глубокого охлаждения только что умерших людей и животных в надежде на то, что в будущем их удастся оживить и при необходимости вылечить.
Аморфный лёд образуется при сверхбыстром охлаждении воды до температуры –137 °C за тысячные доли секунды. При быстром замораживании кристаллы просто не успевают образоваться.
На сегодняшний день науке известно 17 (!) видов кристаллического льда, отличающихся формой кристаллов, плотностью и даже электрическими свойствами.
Правда, на Земле практически весь лёд относится к одному виду, названному «обычный кристаллический лёд» или по-научному — лёд Ih. В верхних слоях атмосферы изредка встречается и другая форма — лёд Ic. Все остальные виды льда получены в лабораториях экспериментальным путём. Но они могут встречаться на других планетах или кометах.
Фазовая диаграмма воды
Лёд может иметь одну из 17кристаллических структур (Ih, Ic – XVI) в зависимости от условии (температуры и давления).
Тройная точка воды соответствует значениям температуры и давления, при которых вода одновременно существует в трёх фазах — в твёрдом, жидком и газообразном.
В критической точке поверхностное натяжение жидкости падает до нуля, поэтому исчезает граница раздела фаз жидкость-пар. Такое состояние называется сверхкритической жидкостью.
На нашей планете около 30 млн кубических километров льда. Самые большие запасы находятся в Антарктиде. Это около 90% всего льда Земли, или порядка 80% пресной воды нашей планеты. Вполне вероятно, что проблема недостатка пресной воды может нас вынудить использовать антарктический лед в качестве источника питьевой воды. Однако просто топить запасы льда в Антарктиде не получится — это приведёт к другой глобальной проблеме, влияющей на климат Земли. Но эта тема достойна отдельной статьи
Источник: www.oyla.xyz
Лед тает
- Опубликовано: ledorub
- 29.04.2013
- Рубрика: Самое интересное про лед
В этой статье блога Вольных Ледорубов речь пойдет о природе таяния льда. Почему лед тает, каким образом, при каких условиях и с какой скоростью?
Как известно, вода в окружающей нас среде находится в трех ипостасях – в виде жидкости, в виде пара, и в виде твердого тела (иначе говоря, льда), при этом вода может свободно переходить из твердого агрегатного состояния в жидкое, из жидкого в газообразное, и наоборот, всегда возвращаясь к исходным свойствам.
Нуль градусов по шкале Цельсия (0°С), при условии нормального атмосферного давления в 1 атмосферу (760 мм ртутного столба), является температурным значением фазового перехода воды из жидкого состояния в твердое (кристаллы льда) и, наоборот, из твердого в жидкое. Получается, что при постоянной нулевой температуре вода может быть как льдом, так и жидкостью, а вопрос кристаллизации или таяния заключается лишь в том, в какой начальной фазе состоит вода и какое на нее оказывается воздействие.
В этой температурной точке лед продолжает оставаться льдом, а жидкость – жидкостью, если, соответственно, температура окружающего воздуха не поднимется выше нулевой отметки или не опустится ниже нее. В противном случае происходит теплообмен. То есть, нагревание льда при нуле градусов приводит к тому, что его температура уже не повышается – затраченное тепло уходит на разрушение кристаллической структуры льда, а после того, как весь лед растает и станет жидкостью, дальнейшее нагревание обусловит повышение температуры воды. В процессе замерзания дело обстоит ровно наоборот – с понижением окружающей температуры ниже нуля вода кристаллизуется, высвобождая при этом то количество энергии (тепла), которое необходимо для таяния того же объема льда.
Удельная теплота плавления льда достаточно высокая и равна 335 кДж/кг (килоджоулей/килограмм); если сравнить с другими веществами, то у свинца, например, она составляет только 25 кДж/кг, у золота – 66.2, у серебра – 105, у железа – 277. Чтобы было более понятно, скажем, что для превращения 1 кг снега или льда в воду, требуется столько же энергии, сколько необходимо для нагревания 1 литра воды до температуры 80°С . Поэтому, не стоит удивляться тому, что с наступлением весны в затененных участках подолгу может лежать и не таять снег. Если бы лед имел низкую удельную теплоту плавления, он таял бы еще быстрее обычного, а вода в реках и водоемах замерзала бы с наступлением заморозков.
Говоря о таянии льда или кристаллизации жидкой воды, стоит учесть некоторые существенные факторы, влияющие на эти процессы.
Как было уже отмечено, и для первого, и для второго фазового перехода важным условием является давление. Для большинства веществ характерно то, что при фазовом переходе увеличение давления способствует увеличению температуры нагревания.
Высокое давление приводит к тому, что атомы вещества начинают уплотняться, соответственно кристаллическая решетка сжимается, следовательно, на ее разрушение требуется больше энергии. Однако в случае с водой зависимость температуры от давления выглядит иначе. Вода, замерзая, превращается в твердое тело (лед), но в отличие от многих веществ, при затвердевании она не уменьшается, а, наоборот, увеличивается в объеме примерно на 9%. Плотность льда меньше плотности воды в жидком виде, при 0°С у льда она составляет 916.7 кг/м3, а у воды – 999.8 кг/м3 (вот почему лед и не тонет в воде), а значит, увеличение давления способствует ускорению перехода воды из твердого состояния в жидкое, что в свою очередь приводит к снижению температуры плавления льда. Например, чтобы снизить температуру плавления льда на 1°С нужно увеличить давление боле чем на 100 кгс/см2 (килограмм-сила/кв.см) или 10 МПа (мегапаскалей).
Зависимость температуры плавления льда от давления
Наглядно зависимость температуры плавления льда от давления можно увидеть на опыте. Через ледяной блок перекидывается нейлоновая нить, а к концам нити привязываются грузы; под давлением нити лед подтаивает, нить опускается, а образовавшаяся вода следом за нитью обратно замерзает. Таким образом, нить постепенно проходит сквозь лед, а сам ледяной блок в то же время остается целым.
Дистиллированная же вода, очищенная от всяких примесей, может оставаться жидкостью и при отрицательной температуре, так как молекулам воды не за что будет зацепиться, чтобы создать кристаллическую решетку, но только в том случае, когда на воду не оказывается воздействие. А если же, к примеру, в сосуд с очищенной водой бросить кусок льда или бутылку с дистиллятом встряхнуть, процесс кристаллизации будет мгновенным, и за несколько секунд вода превратится в лед, благодаря пузырькам воздуха, микрочастицам, попавшим в воду, неровностям на поверхности сосуда.
Дистиллированная вода находясь на больших высотах в виде мельчайших капелек не замерзает даже при очень низких температурах, от -30 °С и ниже.
На фазовые переходы воды влияет также степень ее солености. Морская вода, в отличие от пресной, замерзает всегда при температуре ниже 0°С. Различие температур ее замерзания зависит от концентрации в ней солей, например, при 20%-ной солености температура замерзания составляет около -1°С, а при 40%-ной – чуть выше 2°С.
Концентрация соли снижает и температуру плавления льда. Мы часто с вами видели, как заледенелые проезжие части и пешеходные дорожки посыпали солью. Так вот, соль соединяясь с крупинками верхнего слоя льда, благодаря механическому воздействию, оказываемому нашими ногами и колесами автотранспорта, а также солнечным лучам и ветру, вызывающим подтаивание ледяной корки, образует своего рода смесь. Температура плавления смесей всегда ниже, чем температура плавления отдельных веществ, поэтому лед на дорогах начинает таять незамедлительно. При таянии образуется соленый водный раствор, который помогает растопить лед дальше.
Источник: ledovydom.ru
Таяние льда
Таяние льда — природное явление, очень похожее на таяние снега. Оно ежегодно происходит ранней или средней весной. Критически редко посреди зимы. Ведь если снега много и он таит постоянно в течении зимы, то со льдом всё иначе. Он есть только на поверхности всяких озёр. Суть данного явления очень проста — происходит таяние самого льда.
Он превращается из твёрдого состояния в жидкое. Таяние льда, как правило, в озёрах приводит к неизбежному повышению уровня воды. Иногда это вместе с таянием снега превращается в наводнение.
- 1 Причина
- 1.1 Искусственная версия
Причина
Причина очень проста — обычная жидкая вода ещё во второй половине осени превращается в лёд, как явление замерзание (твердение). Происходит это, когда температура становится ниже 0 градусов — границей замерзания и границей твёрдой и жидкой формы воды. Но для льда это граница таяния — и он естественно превращается в воду. В этом нет ничего особенного — это даже обычнее, чем таяние снега — ведь снег хоть не очень-то и похож на прямую твёрдую форму воды (ею является лёд), а конкретно со льдом ничего необычного. Из-за того, что зимой температура часто минусовая, а возвращается в плюсовую она в первой половине весны, то именно тогда лёд и таит.
Таяние льда неизбежно — такое у нас происходит почти каждой весной, за исключением трёх годов без лета (1816-1818 гг.)
Искусственная версия
Есть и искусственная версия таяния льда — её приходится видеть неудачником. Это те люди (часто дети), которые, не понимая, что лёд не очень крепкий, и ещё хрупкий, так как температура в районе нуля, идут на лёд, катаются и он трескается под ними. В таком случае, небольшое количество льда таит — это во-первых, линия того «ледника», который отвалился, а во-вторых, в воде лёд тоже может немного расстаить.
См. также
Природные явления:
Источник: weather.fandom.com