Пять важных моментов, от которых зависит скорость лодки
1. Установка лодочного мотора на транец лодки .
Все знают, что лодочный мотор должен находиться точно посередине транца, а вот регулировке лодочного мотора относительно нижней точки транца обычно не придают значения, хотя этот фактор очень важен, для глиссирующих лодок. Только при правильной установке мотора по высоте достигается максимальная скорость и экономичность.
Антикавитационная плита лодочного мотора должна располагаться на уровне от 0 до 25 мм ниже днища лодки, как правило, нужное заглубление подбирается экспериментальным путём, и зависит от килеватости лодки. При недостаточном заглублении гребной винт будет хватать воздух, в результате чего будет возникать кавитация, при большом заглублении возникает излишнее сопротивление подводной части ноги лодочного мотора.
2. Регулировка угла наклона лодочного мотора (дифферента).
РАБОТА ВИНТА ПЛМ ПОД ВОДОЙ. КАВИТАЦИЯ.
Необходимый угол наклона лодочного мотора относительно транца лодки определяется положением антикавитационной плиты в режиме глиссирования. Антикавитационная плита должна быть параллельна водной поверхности, или параллельно днищу лодки.
При слишком маленьком углу установки мотора, лодка будет поднимать корму, и опускать нос, при сильно большом лодка начнёт дельфинировать это может привести к потере управления и перевороту. Регулировка угла наклона лодочного мотора осуществляется путём перестановки регулировочного штыря в соответствующее отверстие, такую регулировку проводят на заглушенном двигателе.
3. Подбор шага гребного винта.
Основные характеристики гребного винта это диаметр, шаг, увод лопасти. На заводе при комплектации лодочного мотора, чтобы добиться большей универсальности применения лодочного мотора, как правило, ставят винт с меньшим шагом (грузовой).
Установив, мотор с таким винтом на надувную моторную лодку из ПВХ мы получаем низкую скорость и превышение паспортных оборотов двигателя, что негативно сказывается на его работоспособности и сроке службы. Встречается и противоположное явление, когда газ открыт не полностью 3/4, а скорость уже не растёт и большее открытие ручки газа приводит только к увеличению расхода топлива. Оба этих случая возникают из-за неправильно подобранного винта. Наша главная задача подобрать такой винт, что бы на данной лодке при Вашей загрузке, лодочный мотор мог работать во всём диапазоне оборотов, в результате мы получим максимальную скорость и экономичность.
Статья в тему: Как увеличить расход топлива на инжекторе
Для решения этой задачи нам просто необходим тахометр и GPS навигатор . При движении лодки на штатном винте замеряем две величины скорость и обороты двигателя. Если скорость моторной лодки не повышается, а обороты двигателя не достигли максимальных, значит, нам нужно шаг винта уменьшить, если ситуация обратная растёт скорость и растут обороты выходя за рекомендованные заводом изготовителем для данного мотора, тогда нужно шаг винта увеличить. Увеличение шага винта при том же диаметре на 1 дюйм снижает обороты двигателя примерно на 200 об/мин, и наоборот уменьшение шага винта повышает обороты двигателя. Также и диаметр гребного винта влияет на обороты двигателя, но это уже более сложный путь и используют его больше в спорте.
КАВИТАЦИЯ №39
4. Распределение веса в лодке.
В надувных лодках оснащённых моторами малой мощности 4-6 л.с. выход на глиссирование возможен, только если соблюдать определённые правила распределения груза. Поскольку мощность лодочного мотора буквально граничит с возможностью перейти из водоизмещенного режима в глиссирующий от шкипера требуются определённые навыки, ведь скорость глиссирующей лодки в полтора раза выше, при меньшем потреблении топлива.
Рассмотрим самую распространённую ситуацию, когда Вы сидите на задней банке, максимально сдвинувшись к транцу. Лодка приподнимает нос и пытается выйти на глиссирование, но что-то ей мешает, не хватает буквально пол лошадиной силы. Так чего же нам на самом деле не хватает? Ответ прост, во время выхода на глиссирование под днищем лодки собирается воздух на языке водомоторников «бревно» если шкипер пересядет вперёд к центру лодки то поможет лодке через него перевалить, и сразу почувствует прибавку в скорости при тех же оборотах двигателя. Такое перемещение шкипера поможет поднять скорость лодки даже на моторе мощностью 2.5 л.с. с 7-8 км/ч до 12-13км/ч правда это будет не полноценный выход на глиссирование, а так называемый переходный режим.
Статья в тему: Промывка двигателя уайт спиритом перед заменой масла
Не бойтесь экспериментировать, возьмите с собой GPS навигатор и найдите в лодке такое положение при котором лодка будет идти с максимальной скоростью, для мотора мощностью 4л.с. скорость 20 км/ч вполне достижимая величина.
5. Гидрокрыло на лодочный мотор.
Изначально гидрокрыло (гидрофоил) получило большое распространение при установке на мощные лодочные моторы, которые устанавливали на короткие лодки, что бы убрать «кобру» при выходе на глиссирование. Но как оказалось на практике данное приспособление при установке на моторы малой мощности помогает им выйти на глиссирование в случая когда, казалось бы, глиссирование невозможно из-за малой мощности лодочного мотора. Происходит это потому что крыло установленное на антикавитационной плите лодочного мотора создаёт дополнительную подъёмную силу и помогает маломощному лодочному мотору вытолкнуть лодку на глиссирование.
Изготовление и регулировка гидрокрыла процесс довольно кропотливый, но полученные результаты стоят затраченных сил и времени. Когда лодка 2,90 м. под мотором 3,5 л.с. уверенно выходит и идёт в режиме глиссирования.
Источник: pennasol.su
Кавитация гребных винтов
Кавитация — гидродинамический процесс разрыва сплошности жидкости, сопровождаемый появлением отдельных пузырьков и полостей, заполненных смесью пара и выделившихся из воды, ранее растворенных в ней газов. Кавитация наступает, когда давление в жидкости достигает критического значения — давления насыщенных паров. Для воды при комнатной температуре это давление = 2,3 кПа, что составляет чуть более двух процентов от атмосферного.
В соответствии с законом Бернулли давление на поверхности тела, движущегося в жидкости, падает с ростом скорости. Чем выше скорость, тем быстрее давление снижается до критического значения и на большей площади возникает кавитация. С особыми проблемами сталкиваются при проектировании высокоскоростных судов, предотвратить кавитацию отдельных элементов, которых (крыльев, стоек, кронштейнов и т. д.) стоит большого труда. То же можно сказать и о гребных винтах, лопасти которых движутся со значительными скоростями.
Кавитация лопастей винта. Практически лопасть представляет собой несущее крыло сложной формы. Соответственно процессы возникновения и развития кавитации на лопасти имеют много общего с таковыми у крыла.
Различают три вида кавитации крыла: вихревую, пузырчатую и пленочную. Первая имеет место в ядрах, сбегающих с концов крыла вихрей, где давление достигает критического значения. Эти ядра заполняются паром и газом, становятся видимыми.
Дальнейший рост скорости приводит к снижению до величины давления на небольших участках поверхности крыла — образуются отдельные пузыри, ограниченные по размерам полости. Когда давление становится равным критическому на большей части крыла, образуется каверна, охватывающая значительную поверхность, — пленочная кавитация. По мере увеличения скорости растут и размеры каверны, которая может замыкаться далеко за пределами крыла [1].
Способы борьбы с кавитацией
Экспериментальные исследования кавитации гребных винтов показывают, что кавитация начинается у края лопасти и распространяется по направлению к ступице узкой полосой по входящей кромке засасывающей поверхности лопасти авиационного профиля, и в районе наибольшей толщины, если профиль сечения сегментный. Такая картина соответствует первой стадии кавитации винта.
Хотя гидродинамические характеристики винта практически не меняются, но пузыри схлопываются, вызывая кавитационную эрозию, вследствие чего лопасти теряют прочность
При дальнейшем возрастании скорости наступает вторая стадия кавитации, когда каверна захватывает всю засасывающую поверхность лопасти, и поэтому эрозия отсутствует, но существенно меняются гидродинамические характеристики винта и резко падает его КПД.
Для того чтобы не возникала кавитация, гребной винт должен работать на ходовом режиме при числе оборотов, на 10-15% меньше, чем .
Для устранения последствий, связанных с первой стадией кавитации, стремятся устранить или отдалить ее появление, путем увеличения дискового отношения θ и изменяя профиль сечения лопастей. Полностью устранить первую стадию кавитации не удается, поэтому выбирают дисковое соотношение, исключающее появление второй стадии кавитации.
Гребные винты с толстыми лопастями более подвержены кавитации.
Чем глубже погружен винт, тем меньше вероятность его кавитации, так как давление столба жидкости увеличивается с ростом глубины погружения.
Последствия кавитации приводят к ухудшению пропульсивных качеств, разрушению лопастей, эрозии, шуму и вибрации гребного винта [1].
Источник: studfile.net
Кавитация гребных винтов
5.5.1 Природа кавитации. Кавитацией называется явление разрыва сплошности течения капельной жидкости при понижении местного давления до некоторого критического значения ркр. Область разрыва (кавитационная каверна) представляет собой объем, заполненный парами жидкости и растворенными в ней газами. Давление внутри каверны близко к давлению насыщенных паров рd при данной температуре. Отсюда кавитацию гребного винта обычно рассматривают как явление вскипания воды в потоке, вызванном винтом, при снижении местных давлений до давления насыщенных паров, полагая ркр рd.
Природу кавитации можно проследить на примере элемента лопасти, обтекаемого под углом атаки потоком жидкости, имеющим на бесконечности в точке А скорость υ0 и давление р0 (рис. 5.10). Выделим на одной линии тока с точкой А точку В у поверхности элемента лопасти. Скорость и давление в точке В обозначим соответственно через υ1 и р1. Тогда уравнение Бернулли для линии тока запишется так:
Из формулы видно, что в тех точках поверхности элемента, где υ1 > υ0 давление понижается δр < 0; в местах, где υ1 < υ0 давление повышается δр > 0. В результате на нагнетающей стороне лопасти вращающегося винта создается зона повышенного давления, на засасывающей стороне − зона пониженного давления.
Характерное распределение давлений на засасывающей и нагнетающей поверхности лопасти работающего гребного винта показано на рис. 5.10. Как следует из рисунка, площадь эпюры давлений, а следовательно, и величина упора, развиваемого гребным винтом, на 70 80% определяется разряжением на засасывающей поверхности и
только на 20 30% − повышением давления на нагнетающей поверхности лопасти.
Рисунок 5.10 − Схема обтекания элемента крыла
При определенной частоте вращения гребного винта скорость обтекания лопасти достигает значения в 3 5 раз превышающего поступательную скорость судна. При этом давление на засасывающей поверхности понижается до давления насыщенных паров. В результате холодного кипения воды из нее выделяются растворенные газы. Пары и газы оттесняют воду от поверхности лопасти и образуют на ее засасывающей стороне кавитационную каверну.
5.5.2 Стадии кавитации и влияние кавитации на работу гребного винта. В зависимости от степени понижения давленияв свободных вихрях и на поверхности лопастей, а также характера влияния кавитации на работу винта различают начальную (газовую) кавитацию, первую и вторую стадии кавитации.
Газовая кавитация в свободных вихрях, сбегающих с краев лопастей и с оси ступицы не оказывает заметного влияния на гидродинамические характеристики винта, но вызывает шум винта.
При первой стадии кавитации каверна захватывает только часть засасывающей поверхности лопасти, где скорость частиц наибольшая. На этой стадии гидродинамические характеристики гребного винта изменяются незначительно по сравнению с их значениями при безкавитационном обтекании.
Объясняется это тем, что площади эпюр давлений при безкавитационной работе винта и в условиях первой стадии кавитации практически равны. Однако первая стадия кавитации нежелательна, так как является причиной механического разрушения материала лопасти — эрозии. Пары воды, переходя из области каверны в область более высоких давлений, конденсируются.
Процесс конденсации пара и смыкания (разрушения) кавитационных пузырьков происходит с большой скоростью. В момент конденсации пузырьков пара вода мгновенно заполняет образующую пустоту, нанося по лопасти гидродинамические удары, причем местные давления достигают больших значений. В результате, в местах замыкания каверны, поверхность лопасти разрушается.
На второй стадии кавитационная каверна захватывает всю засасывающую сторону лопасти и замыкается в потоке за гребным винтом. На этой стадии кавитации эрозии не происходит, так как пары конденсируются за пределами лопасти. Однако гидродинамические качества винта по сравнению с безкавитационным обтеканием заметно ухудшаются.
Увеличение частоты вращения винта уже не приводит к уменьшению давления на засасывающей поверхности лопасти, где р рd, отчего упор винта практически не растет. Кроме того, потоком обтекается профиль более низкого гидродинамического качества (за счет каверны). Это вызывает увеличение вращающего момента, приложенного к винту, и уменьшение КПД движителя.
Представление об ухудшении гидродинамических качеств винта можно составить по кривым действия винта, отвечающим безкавитационному обтеканию и кавитации различной степени развития (рис. 5.11). Сплошными линиями нанесены зависимости коэффициентов упора , момента , и КПД ηр винта от относительной поступи λр при безкавитационнном обтекании и в первой стадии кавитации.
Пунктирные линии представляют те же зависимости при наступлении второй стадии кавитации. Видно, что ухудшение гидродинамических характеристик наблюдается с уменьшением λр (например, с увеличением частоты вращения винта n при υp = const), что обусловлено увеличением углом атаки на лопастях. Величины , и ηр во второй стадии кавитации зависят не только от λр, но и от параметра χ, называемого числом кавитации. Последнее характеризует величину предельного разряжения на лопасти, (в долях скоростного напора), которое может быть достигнуто в воде в заданных условиях:
где ра — атмосферное давление; hс — глубина погружения винта (рис. 5.10).
Рисунок 5.11 − Кривые действия кавитирующего винта
Число кавитации определяется только внешними факторами (атмосферным давлением, глубиной погружения винта, плотностью и температурой воды, от которой зависит давление насыщенных паров), поступательной скоростью υp и не зависит от геометрических элементов гребного винта.
Критическое число кавитации χкр соответствует возможному наибольшему разрежению на лопастях при докавитационных режимах их обтекания. Начало кавитации гребного винта определяется условием χ = χкр. При χ > χкр кавитация отсутствует, при χ < χкр винт кавитирует, причем тем больше, чем меньше число χ по сравнению χкр (рис. 5.11).
В какой бы стадии не протекала кавитация, она всегда приводит к нежелательным последствиям: усиливает шум работающего винта, вызывает эрозию лопастей, снижает гидродинамические характеристики гребного винта, увеличивает неравномерность загрузки лопастей, что является одной из причин вибрации гребного вала и, как следствие, корпуса судна. Поэтому при проектировании винтов стремятся обеспечить их безкавитационную работу. С этой целью применяют профили с более равномерным распределением давлений по лопасти, увеличивают дисковое отношение, уменьшают относительную толщину лопасти, повышают давление на засасывающей стороне лопасти за счет погружения оси винта и т.п.
В настоящее время не существует гребных винтов, свободных от кавитации при любых частотах вращения. В некоторых случаях винты судов могут работать в условиях, характерных для первой стадии кавитации или приближающихся к ней.
Во избежание создания условий, способствующих кавитации винтов, необходим контроль за их состоянием. Не должны допускаться к плаванию суда с погнутыми лопастями винтов и с зазубренными кромками лопастей, плохим состоянием корпуса, кронштейнов обтекателей валов, стабилизаторов, расположенных перед движителями.
Для быстроходных судов (глиссирующие катера, катера на подводных крыльях и т.п.) во многих случаях не удается избежать кавитации гребных винтов и они проектируются с учетом кавитации – кавитирующие и суперкавитирующие винты (СКВ). Под суперкавитацией понимают сильно развитую вторую стадию кавитации, когда обтекание лопастей винта происходит со срывом струй и каверна уходит за пределы лопастей.
Исходя из того, что при суперкавитации основная часть упора создается за счет давления на нагнетающей поверхности лопасти и форма засасывающей поверхности не играет существенной роли, СКВ имеют клиновидный профиль сечения лопасти и искривленную нагнетающую поверхность (рис. 5.12). Такая форма лопасти, с одной стороны, способствует образованию каверны оптимальных размеров, с другой — обладает наименьшим сопротивлением вращению гребного винта. В условиях суперкавитации такие винты обладают более высокими гидродинамическими качествами по сравнению с некавитирующими гребными винтами.
Конструктивной особенностью СКВ является также острая входящая кромка лопасти и смещение наибольшей толщины профиля к выходящей кромке. Клиновидные профили такой формы позволяют
уменьшить толщину каверн, образующихся в междулопастном пространстве, снизить их взаимное влияние и тем самым повысить гидродинамические характеристики винта. СКВ имеют сравнительно небольшое дисковое отношение Θ = 0,40 0,55, узкие лопасти, их число z = 2 3, что уменьшает возможность взаимного влияния каверн каждой лопастей.
Рисунок 5.12 − Профили сечений лопастей суперкавитирующих винтов
Положительные качества СКВ проявляются при работе их на расчетном режиме в условиях полностью развитой кавитации. Для режимов, отличных от расчетных, когда кавитация отсутствует или развита частично, происходит повышенное вихреобразование позади тупой выходящей кромки лопасти СКВ, вследствие чего его КПД становится ниже, чем у обычных винтов. Начиная с χ = 0,4 и выше, СКВ уже уступают обычным гребным винтам.
Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:
Источник: studopedia.ru