Свет — лишь небольшая видимая частица огромного электромагнитного спектра излучения. В этот спектр входят радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолет, рентгеновское излучение и гамма-лучи. Один лишь видимый свет человек может разглядеть в виде цветов, которые он образует на поверхности предметов.
Разные цвета получаются из-за разных частот световых волн, путешествующих сквозь пространство. Чем ближе друг к другу вершины волн, тем выше их частота. Наименьшую частоту и самую большую длину волны среди всех световых волн имеют радиоволны, в то время как гамма-излучение напротив, обладает самой высокой частотой.
Для того, чтобы разглядеть всю прелесть цветов, которые способен образовывать видимый спектр излучения, вам достаточно фонарика, экрана телевизора или просто солнечного дня. Кроме того, необходимо найти ровную поверхность, которая могла бы отражать свет, и, конечно же, необходим наблюдатель. Трудно недооценить важность цвета в повседневной жизни. Без него мы не могли бы отличить многие вещи друг от друга.
Что такое цвет? Дисперсия света
10. Видимый спектр света
Сам по себе свет — пучок невидимой энергии, путешествующий через пространство. Чтобы мы смогли разглядеть его, необходимо, чтобы свет прошел сквозь плотные облака пыли или тумана. Мы также можем наблюдать взаимодействие света с окружающим миром, когда он отражается от встречных объектов. Наши глаза улавливают его отраженные волны и преобразуют их в цвета. Сэр Исаак Ньютон обнаружил, что, когда луч света пропускают сквозь призму, он преломляется и распадается на цвета, расположенные в одном и том же порядке: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый.
Наша сетчатка содержит два типа светочувствительных клеток: палочки и колбочки. Палочки определяют интенсивность света и его яркость, в то время как колбочки отвечают за цветовосприятие. Всего в наших глазах находится три типа колбочек, которые различают красный, синий и зеленый цвета соответственно. Именно комбинации этих трех основных цветов и образуют все остальные, вторичные цвета. Если вам необходим наглядный пример, то представьте, что весь спектр электромагнитного излучения занимает расстояние от Нью-Йорка до Лос-Анджелеса (что примерно составляет около 2500 миль), тогда видимый спектр будет в длину равен примерно одному дюйму.
9. Необходимость темноты
Иоганн Вольфганг фон Гете заметил, что, глядя сквозь призму на темные объекты, расположенные на светлом фоне, вокруг них появляется цветной ореол. Такой эффект обычно происходит при переходе от белого к черному, когда цвет меняется поэтапно на желтый, затем красный, а от черного — на фиолетовый, синий и бирюзовый. Наблюдая за закатом, вы наверняка замечали, как меняется цветовая гамма на вечернем небе. По мере приближения к горизонту, солнце становится краснее и краснее, это явление обусловлено тем, что из-за изменения угла солнца, его свет проходит через более низкие и плотные слои атмосферы. Красный цвет получается в результате того, что свету приходится преодолевать более плотную среду.
СОЕДИНИВ СВЕТ ВСЕХ ЦВЕТОВ РАДУГИ — ПОЛУЧИТСЯ БЕЛЫЙ..?
Если же мы посмотрим в противоположную сторону, то увидим, как меняется вечернее небо от темно-голубого к синему и фиолетовому. Чем больше света находится в атмосфере, тем более ярким будет небо, а то, что мы наблюдаем ночью — не что иное, как тьма и пустота космоса вверху над нами.
8. Цветные тени
Если смотреть на окно несколько секунд, а затем закрыть глаза, то можно увидеть его негатив — светлую раму, окружающую темное стекло. Этот трюк работает с любыми цветными предметами. Это объясняется тем, что каждый цвет обладает дополняющим цветом. Красный обладает голубым, зеленый — пурпурным, а синий — желтым.
Если вы будете светить на вазу двумя разными источниками света, находящимися на некотором расстоянии друг от друга, то у вазы появится две тени. Если один из источников света будет светить красным, то противоположная ему тень станет тоже красной, а основная — голубой. На самом же деле все тени серого цвета, а то, что вы видите — лишь оптический обман.
7. Какой же настоящий цвет предметов?
Все зависит от освещения. Разноцветные огни — это лишь видимая часть спектра, но сами-то предметы сделаны не из света. К примеру, у вас есть зеленая рубашка, и пока вы идете по улице — все хорошо, она по прежнему зеленая, но что вы скажете о ней, когда войдете в помещение с красным освещением?
Обычно красный смешиваясь с зеленым создает желтый цвет, но рубашка окрашена пигментным красителем, где зеленый был получен путем смешивания синего и желтого красителей, которые не будут отражать красный. Таким образом, ваша рубашка будет казаться черного цвета. В неосвещенном помещении рубашка также будет казаться черной, равно как и остальные предметы.
В качестве еще одного примера возьмем банан. Что делает его желтым? Когда белый свет попадает на банан, все его составляющие кроме желтого поглощаются. Желтый, тем временем, отражается у нас в глазах. В некотором смысле, бананы могут быть любого другого цвета, но не желтого, поскольку мы видим лишь тот цвет, который они отразили.
Так какого же цвета банан на самом деле? Ответ прост: он синий. Теоретически, конечно же. Синий цвет является дополнительным к желтому. Таким образом, можно прийти к заключению, что цвет не является свойством предмета, это всего лишь интерпретация невидимых волн разных частот, порождаемая нашим мозгом.
6. Розовый
Если взглянуть на цветовой круг, то можно увидеть первичные и вторичные цвета в альтернативном порядке. Каждый вторичный цвет производится путем объединения соседних основных цветов. Объединив красный и зеленый цвета, мы получим желтый, объединив зеленый и синий — получим голубой, а объединив красный и синий — получим розовый.
Вы никогда не задумывались, почему розового нет в радуге? Ответ прост: такого цвета в природе нет. Есть желтый и голубой, но не розовый. Это обусловлено тем, что красный и синий цвета находятся в противоположных концах видимого спектра. Розовый цвет, по своей сути, олицетворяет собой все в мире, невидимое человеческому глазу.
5. Вантаблэк
Всем известно, что черный придает особую загадочность образу и стройнит, но слышали ли вы о новом черном — так называемом Вантаблэке? Этот цвет похож на настоящую черную дыру. Его невозможно увидеть, он становится видим только из-за своего фона. Можно увидеть его границы, но если смотреть прямо на пятно этого цвета, то это будет подобно взгляду в пустоту.
Да, это даже не черный, это — ничто. Он поглощает весь видимый спектр света, за исключением 0,035% излучения. Для сравнения, этот показатель у черного угля никогда не опускается ниже 0,5%.
Вантаблэк был совсем недавно изобретен британскими учеными и будет применяться в проектировании невидимых перехватчиков и современного оружия. На сегодняшний день главной сферой его применения остается астрономия, где для проведения космических исследований необходимы сверхчувствительные телескопы, которые способны обнаружить самые далекие звезды и галактики.
4. Это мой красный, а не твой!
Наблюдая за кем-то в красном платье, помните ли вы, что кто-то из ваших друзей видит его вовсе не как красное, а, к примеру, как синее или зеленое. Все мы с детства обучены названиям цветов, поэтому принимаем как должное, что тот конкретный цвет — красный. Но не следует забывать, что в мире есть тысячи людей, страдающих от разных типов дальтонизма. Он мешает им различать красный, зеленый и синий цвета, поэтому они видят мир не совсем таким, каким видим его мы.
3. Запрещенные цвета
При помощи красного, желтого, зеленого и синего цветов в различных комбинациях можно описать все остальные цвета видимого спектра. Фиолетовый, к примеру, может быть описан как красно-синий, цвет лайма — как желто-зеленый, оранжевый — как красновато-желтый, а бирюзовый — как голубовато-зеленый. Но как бы вы назвали что-то оранжево-зеленого цвета? А голубовато-желтого?
Вы не знаете, а все это потому что на самом деле этих цветов не существует в теории, они называются запрещенными. Все сводится к тому, как мы воспринимаем цвет. Колбочки в наших глазах определяют красный, зеленый и синий цвета по разным длинам волн. Когда их длины пересекаются, мы видим уже новые цвета.
Идея запрещенных цветов настолько сильно засела в головах Хьюитта Крэйна и Томаса Пиантанида, что в 1983 году им удалось совершить невозможное. Проводя ряд экспериментов, им удалось воссоздать такие цвета, у которых не было названия. Этот эффект был достигнут путем расположения рядом друг с другом красных и зеленых полосок (а также желтых и синих). Убедившись в том, что свет, отраженный каждым цветом активизирует лишь определенные колбочки, они принялись смешивать цвета таким образом, что у них получилось сформировать абсолютно новые цвета, до того момента не виданные никем.
2. Что же видят животные?
Наверняка все слышали о том, что собаки — дальтоники, и что летучие мыши на самом деле полностью слепы. Но это не совсем верно. Летучие мыши способны видеть, просто у них не самое хорошее зрение, а собаки, в свою очередь, не различают цвета так, как это делаем мы.
У человека есть три цветовых рецептора, в то время как у собаки всего лишь два, таким образом, они лишены удовольствия видеть красный цвет. Но все относительно. Будет ли собака считаться дальтоником для кальмара, который различает лишь синий цвет? В то же время, змеи слабо различают обычный спектр цветов, в то время как отлично справляются с этой задачей в инфракрасном диапазоне.
Пчелы, в свою очередь, различают синий, желтый и ультрафиолет. Вы ведь помните, насколько мал видимый для нас спектр света, в сравнении с общим спектром электромагнитного излучения? Вы не сможете представить себе какой-то новый цвет, также, как и не сможете объяснить слепому от рождения человеку, как выглядит красный цвет. У нас просто нет слов, которые смогли бы донести истинный смысл до человека, никогда в жизни не видевшего тот или иной цвет. Если вам нужны примеры, то некоторые бабочки обладают тремя рецепторами цвета, как и люди, а также еще двумя дополнительными, которые различают неизвестные человеку цвета.
1. Личное свечение
Вы, наверное, слышали, фразы, подобные этой: «О, у вас прекрасная фиолетовая аура!» или «Ты просто светишься!» Оказывается, есть в этих фразах доля истины. Ученые Киотского университета обнаружили, что люди в самом деле излучают видимый свет, но этот свет в 1000 раз менее мощный, чем видимый невооруженным глазом. Они также обнаружили, что наша аура достигает максимальной яркости ближе к 4 часам дня. Они приписывают это явление побочным продуктам нашего метаболизма — свободным радикалам.
Чем больше расстояние между источником света и наблюдателем, тем более тусклым становится свет. Это не потому, что тот теряет свою силу по пути или впитывается различными объектами, а потому что энергия света рассеивается по большей площади, прежде чем доходит до вас.
Солнце одинаково ярко светит во всех направлениях, поскольку его свет распространяется во все стороны в равных количествах. Чем дальше расстояние, тем более рассеянным становится свет, этот процесс может длиться до тех пор, пока он не рассеется до состояния миллиардов отдельных фотонов, разлетающихся во всех направлениях. Свет также несет в себе информацию. Мы узнаем о расположении других звезд и галактик, их составе и направлении движения по свету, отраженному ими.
Поддержи Бугага.ру и поделись этим постом с друзьями! Спасибо! 🙂
Источник: bugaga.ru
Цвет в природе и живописи
Цвет в представлении человека, не думавшего над вопросами оптики и физиологии цветоощущения, есть свойство предмета. Мы знаем, что снег — белый, лист летом — зеленый, спелый лимон — желтый. Цвет всегда связан с предметом.
Любой предмет имеет свой природный цвет, как свое неотъемлемое относительно устойчивое свойство. Цвет виден, когда предмет освещен. Цвет не виден в темноте, хотя предмет сохраняет и в темноте свой цвет и притом тот же самый цвет: свет только делает цвет предмета видимым.
Говоря образным языком одного из цветоведов, в этом вопросе па сцене — так мы обычно думаем — два независимых актера: уходящий и приходящий свет (освещение солнцем, луной, лампой) и остающийся неизменным цвет — непременное и собственное свойство предмета.
Цвет любого тела воспринимается нами благодаря тому, что тела пропускают или отражают часть световых лучей, падающих на них. Поглощение и отражение лучей избирательно для каждого тела, поэтому мы видим цвет тела таким, который соответствует суммарному эффекту смешения между собой отдельных лучей, входящих в спектр. Например, когда от поверхности тела отражаются только зеленые или Красные лучи, а остальные поглощаются, мы видим тело желтым. Когда от поверхности тела отражаются главным образом красные лучи, а в меньшей степени оранжевые и желтые, мы видим тело красным. При полном отражении лучей тело воспринимается белым, а при почти полном поглощении лучей — черным.
Наблюдательный художник, опираясь на свою творческую практику, не согласится с такой простой и, казалось бы, естественной постановкой вопроса. Он заметит сложность вопроса. Он знает, что цвет предмета крайне изменчив, что он, строго говоря, всегда разный: тут изменилось освещение, там играет роль цветовая перспектива, здесь — рефлекс от неба, тут — контраст.
Стемнело, и все цвета сдвинулись в сторону холодных. Наконец наступили полные сумерки. Мы еще видим предметы, но куда исчез их собственный характерный цвет?
Леонардо да Винчи, гениальный наблюдатель природы и гениальный художник, писал:
«Мы можем сказать, что почти никогда поверхности освещенных тел не бывают подлинного цвета этих тел. Если ты возьмешь белую полоску, поместишь ее в темное место и направишь на нее свет из трех щелей, то есть от солнца, от огня и от воздуха, такая полоска окажется трехцветной».
Цвет, отраженный предметом, меняется и в зависимости от цвета окружающих предметов. Все они, как вторичные излучатели, также освещают соседние предметы своим отраженным светом. Говоря словами Леонардо да Винчи: «поверхность каждого тела причастна цвету противостоящего ему предмета». Тень от красного предмета на зеленом уже не будет зеленой.
Кроме того, на сетчатку глаза действуют вовсе не предметы сами по себе и даже не отраженный от них световой ноток, а световой поток, дошедший до сетчатки глаза и измененный, как правило, на своем пути. Именно этот, и только этот, дошедший до сетчатки световой поток оказывает, в зависимости от своих свойств, то или иное фотохимическое действие на концевые нервные аппараты, заложенные в сетчатке. Если общий световой поток достаточно интенсивен, работают нервные окончания, обеспечивающие (у человека с нормальным зрением) ясное ощущение разных цветов. Если общий световой ноток очень слаб, работают другие нервные окончания, обеспечивающие почти только ощущение относительной яркости света («ночное зрение»).
Лист березы летом — зеленый, а осенью — желтый. Два листа березы — один, развившийся в тени, другой на солнце — различаются по цвету. Здесь всюду имеется в виду цвет как признак предмета—предметный цвет, или, как обычно говорят художники, локальный цвет». Различая оттенки красок, например желтых земельных красок (охр), мы также имеем в виду предметный цвет, цвет, зависящий от разного химического состава красок и физической структуры красочного слоя.
Но успешно сравнивать оттенки листьев, пигментов и т. п. можно только в равных условиях освещения, расстояния, окружения. «Цвет» одного и того же предмета меняется при изменении этих «случайных» факторов, не имеющих никакого отношения к природе предмета.
Говоря об изменениях «цвета» под влиянием подобных факторов, мы имеем в виду цвет отраженного от предмета светового потока, цвет излучения, дошедшего через рассеивающие и поглощающие среды до нашего глаза.
Предметный цвет одинаков при разном цвете идущего от предмета излучения. И, наоборот, цвет отраженного излучения может быть одинаковым при разном предметном цвете.
Предметный цвет
Предметный цвет иногда противопоставляют видимому цвету, предметный цвет даже называют цветом, который мы скорее помним, чем видим. Это противопоставление неверно. Правда, световой поток, отраженный предметом, меняется в зависимости от освещения, удаления и предметной среды.
Следовательно, видимый цвет также должен был бы меняться в зависимости от этих факторов, а предметный цвет при этом но меняется. Но вопрос о том, видим ли мы предметный цвет, не снимается этим фактом, а принимает другую форму. Он значит теперь следующее: при каких условиях мы хорошо видим предметный цвет? Или следующее: какой именно цвет мы принимаем за собственный цист предмета?
Эксперименты показывают, что в нашем предметном опыте часто происходит снятие оттенков цвета, зависящих от освящения, подравнивание их к некоторому «неизменному» цвету, впрочем, неточное подравнивание. В качестве такого неизменного цвета выступает цвет предмета при рассеянном дневном свете.
Цвет предмета лучше всего виден при дневном рассеянном свете. Более тонкий зрительный анализ, свойственный художнику, найдет, конечно, и в едином цвете предмета при рассеянном свете множество оттенков.
Итак, нет оснований называть предметный цвет «памятным» (или «знаемым») цветом в противоположность видимому цвету, хотя помним мы лучше именно предметный цвет. Мы хуже помним оттенок цвета, зависящий от освещения. В этом, конечно, сказывается практическая важность предметного цвета.
Цвет лучей того или иного источника света объединяет краски предметного мира, делает их родственными и соподчиненными.
Цветовые характеристики
У каждого цвета есть три основных свойства: цветовой тон, насыщенность и светлота.
Кроме этого, важно знать о таких характеристиках цвета, как светлотный и цветовой контрасты, познакомиться с понятием локального цвета предметов и прочувствовать некоторые пространственные свойства цвета.
В нашем сознании цветовой тон ассоциируется с окраской хорошо знакомых предметов. Многие наименования цветов произошли прямо от объектов с характерным цветом: песочный, морской волны, изумрудный, шоколадный, коралловый, малиновый, вишневый, сливочный и т. д.
Легко догадаться, что цветовой тон определяется названием цвета (желтый, красный, синий и т. д.) и зависит от его места в спектре.
Насыщенность цвета представляет собой отличие хроматического цвета от равного с ним по светлоте серого цвета.
Если в какой-либо цвет добавить серую краску, цвет станет меркнуть, изменится его насыщенность.
Романтизм как литературное направление: В России романтизм, как литературное направление, впервые появился .
Аффирмации для сектора семьи: Я создаю прекрасный счастливый мир для себя и своей семьи.
Группы красителей для волос: В индустрии красоты колористами все красители для волос принято разделять на четыре группы.
Основные понятия ботаника 5-6 класс: Экологические факторы делятся на 3 группы.
Источник: poisk-ru.ru
Дисперсия света
Когда Ньютон занимался усовершенствованием телескопов, он заметил, что изображение, которое дает объектив, окрашено по краям. Он заинтересовался этим и первый «исследовал разнообразие световых лучей и проистекающие отсюда особенности цветов, которых до того времени никто даже не подозревал» — именно такие слова содержит надгробная надпись на памятнике Ньютону.
Радужную окраску изображения, получаемого с помощью линзы, наблюдали, конечно, и до Ньютона. Было замечено также, что радужные края имеют предметы, которые рассматриваются через призму. Пучок световых лучей, прошедших через призму, окрашивается по краям. Определение Цвет — одно из свойств материальных объектов, воспринимаемое как осознанное зрительное ощущение.
Тот или иной цвет «присваивается» объекту человеком в процессе зрительного восприятия этого объекта. При исследовании света Ньютон поставил простой опыт. Он направил на призму пучок света через малую щель в ставне.
Пучок солнечного света проникал через щель в темную комнату, падал на призму, преломлялся и давал на противоположной стене изображение в виде длинного радужного чередования цветов. К тому времени уже сложилась традиция считать, что в радуге всего 7 цветов. Поэтому Ньютон выделил в этом изображении также 7 цветов: фиолетовый, синий, голубой, зеленый, желтый, оранжевый и красный.
Он назвал радужную полоску спектром. Определение Спектр — совокупность цветных полос, получающихся при прохождении светового луча через преломляющую среду. Получив спектр, Ньютон закрыл отверстие в ставне красным стеклом.
После этого на стене осталось только красное пятно. Затем ученый закрыл щель синим стеклом, и на стене появилось синее пятно. Это означало, что не призма окрашивает белый свет, как предполагалось раньше. Призма не изменяет свет, а лишь разлагает его на составные части. Определение Белый свет — электромагнитное излучение видимого диапазона, которое вызывает у наблюдателя с нормальным цветовым зрением световое ощущение, нейтральное по отношению к цвету.
Белый свет имеет сложный состав. Из него можно выделить пучки различных цветов, и лишь совместное их действие вызывает у нас впечатление белого цвета. В самом деле, если с помощью второй призмы, повернутой на 180° относительно первой, собрать все пучки спектра, то опять получится белый свет (смотрите рисунок ниже).
Выделив какую-либо часть спектра, например зеленую, и заставив свет пройти еще через одну призму, мы уже не получим дальнейшего изменения окраски. Другой важный вывод, к которому пришел Ньютон, был сформулирован им в трактате «Оптика» следующим образом: «Световые пучки, отличающиеся по цвету, отличаются по степени преломляемости».
Этот вывод Ньютона говорит о том, что для лучей разных цветов показатель преломления материала призмы был различным. Причем наиболее сильно преломляются фиолетовые лучи, меньше других — красные. Зависимость показателя преломления света от его цвета Ньютон назвал дисперсией (от лат. dispersio — рассеяние).
Показатель преломления зависит от скорости света в веществе, о чем мы уже говорили ранее. Абсолютный показатель преломления определяется формулой: n = c v . . где v — скорость светового луча в среде, c — его скорость в вакууме.
Луч красного цвета преломляется меньше из-за того, что красный свет имеет в веществе наибольшую скорость, а луч фиолетового цвета преломляется больше, так как скорость для фиолетового света наименьшая. Именно поэтому призма и разлагает свет. В пустоте скорости света разного цвета одинаковы.
Если бы это было не так, то, к примеру, спутник Юпитера Ио, который наблюдал Рёмер, казался бы красным в момент выхода спутника из тени. Но этого не наблюдается. Зависимость цвета от физической характеристики световой волны: ее частоты колебаний ν (или длины волны λ) была выяснена позже. После этого было дано более глубокое определение дисперсии, чем то, к которому пришел Ньютон.
Определение Дисперсия — зависимость показателя преломления среды от частоты световой волны. Преломляясь, лучи белого света образуют спектр, в котором цвета всегда расположены в строгом порядке: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый.
Ее можно легко запомнить с помощью следующей фразы, которую вы, скорее всего, уже слышали: «Каждый охотник желает знать, где сидит фазан». Первый буквы слов в этой фразе соответствуют первым буквам цветов в спектре. Данная последовательность цветов в спектре неслучайна.
Дело в том, что красный цвет имеет меньшую частоту (соответственно большую длину волны, поскольку это обратно пропорциональные величины). У оранжевого цвета частота чуть выше, у желтого – еще выше, максимальная частота видимого диапазона света соответствует фиолетовому цвету. Поэтому он идет в спектре последним. Пример №1.
Какой цвет преломляется сильнее: синий или голубой? Известно, что преломляются сильнее те лучи, что имеют большую частоту. Синий цвет имеет большую частоту. Следовательно, он преломляется сильнее голубого. Цвета в спектре не имеют резкого перехода, поскольку длины волн имеют большое разнообразие.
Если красный цвет имеет длину волны в диапазоне от 625 до 740, это не значит, что волны с такой длиной будут восприниматься нами одинаково. Но мы будем знать, что свет, образованный волной с длиной волны в 740 нм, более красный, чем тот, что образовался волной 625 нм. Причем последний мы будем также воспринимать, скорее, не красным, а красно-оранжевым цветом.
Таким образом, в природе существует так много различных оттенков, плавно переходящих друг в друга. Несмотря на многообразие оттенков, получить чистые цвета можно. Для этого нужно пропустить белый свет через прозрачный материал, окрашенный в нужный цвет. Тогда этот материал поглотит все цвета и пропустит только тот, в которым окрашен сам.
Подобное действие мы уже описали в опыте Ньютона. Причем свет (излучение), который получается на выходе из прозрачного материала, называется монохроматическим, или монохромным. Определение Монохроматическое (монохромное) излучение — электромагнитное излучение, обладающее очень малым разбросом частот (в идеале все волны имеют одинаковую частоту).
Пример №2. Тонкий пучок желтого света пропустили через стеклянную призму, которая лежит перед экраном. Какое изображение будет получено на экране? Поскольку через призму пропустили только желтый свет, можем принять его за монохроматический, так как разброс длин волн будет небольшим. В результате прохождения через призму он раскладываться в спектр не будет.
Поэтому на экране мы обнаружим желтое пятно. Чем меньше будет разброс длин волн, тем ближе к точке будет это пятно. Чем шире будет разброс, тем больше будет пятно. Причем разные его участки будут иметь различные оттенки желтого цвета в зависимости от того, какую длину волны они имеют.
Зная, что белый свет имеет сложный состав, можно объяснить удивительное многообразие красок в природе. Если предмет, например лист бумаги, отражает все падающие на него лучи различных цветов, то он будет казаться белым. Покрывая бумагу слоем красной краски, мы не создаем при этом свет нового цвета, но задерживаем на листе некоторую часть имеющегося.
Отражаться теперь будут только красные лучи, остальные же поглотятся слоем краски. Трава и листья деревьев кажутся нам зелеными потому, что из всех падающих на них солнечных лучей они отражают лишь зеленые, поглощая остальные. Если посмотреть на траву через красное стекло, пропускающее только красные лучи, то она будет казаться почти черной.
Задание EF17607Пучок белого света, пройдя через призму, разлагается в спектр. Было выдвинуто предположение о том, что ширина пучка на экране за призмой зависит от угла при вершине призмы. Необходимо экспериментально проверить эту гипотезу. Какие два опыта (см. рисунок) нужно провести для такого исследования? Алгоритм решения
- Установить, какие условия проведения эксперимента должны менять, а какие — оставаться постоянными, чтобы проверить данную гипотезу.
- Выбрать 2 картинки, удовлетворяющие этим условиям.
Решение
Если нужно проверить, зависит ширина пучка на экране за призмой от угла при вершине призмы, нужно поставить эксперименты с разными углами при вершине призмы. Угол падения на призму при этом должен быть одним и тем же. Этим условиям удовлетворяют призмы, изображенные на картинках А и В.
Дисперсия проявляется в следующих явлениях:
А. изменение видимого цвета белой ткани при разглядывании её через цветное стекло.
Б. образование радуги при прохождении света через мелкие капли воды.
- Только А
- Только Б
- И А, и Б
- Ни А, ни Б
Алгоритм решения
- Записать определение явления дисперсии света.
- Установить, какие из представленных явлений могут быть объяснены дисперсией света.
Решение
Дисперсия — зависимость показателя преломления среды от частоты световой волны. Когда мы рассматриваем белую ткань через цветное стекло, до нас доходят только те лучи, цвет которых соответствует цвету стекла. При этом все лучи преломляются одинаково, так как они имеют примерно одинаковую частоту. Но радуга — это следствие дисперсии света.
Когда лучи белого света проходят сквозь капельки воды, лучи разного цвета преломляются по-разному. Поэтому на выходе лучи разлагаются в спектр — радугу.
Узкий пучок белого света после прохождения через стеклянную призму даёт на экране спектр. Укажите правильную последовательность цветов в спектре.
а) красный – жёлтый – оранжевый – синий
б) оранжевый – синий – жёлтый – зелёный
в) красный – оранжевый – жёлтый – зелёный
г) красный – жёлтый – оранжевый – зелёный
Алгоритм решения
- Вспомнить последовательность расположения цветов в спектре.
- Выбрать строку, в которой цвета располагаются в соответствующей последовательности.
Решение
Цвета в спектре легко запомнить с помощью фразы: «Каждый охотник желает знать, где сидит фазан». Первая буква слова указывает на первую буква цвета. Следовательно, цвета в спектре располагаются так: красный – оранжевый – желтый – зеленый – голубой – синий – фиолетовый. Этому расположению соответствует строка «в».
Источник: spadilo.ru
Радуга. Цветовой спектр и цветовой круг
Окружающий нас мир и мы, люди, бесконечно многообразны в цвете. И тем не менее, обозначая цветовой признак предмета, мы часто выделяем определенные цветовые группы: цветы — красные, желтые или синие, трава и деревья — зеленые, небо и вода — голубые и т.д. Встречая более сложный оттенок, мы усложняем и определение: розовый, коричневатый, песочный, кремовый, стальной. И, наконец, встречая цвет сложный, не совсем понятный, мы шутливо называем его «серо-буро-малиновый в крапинку».
В дальнейшем, знакомясь с природой цвета, его характеристиками, мы сможем достаточно точно давать ему определение. В этом нам поможет цветоведение, сравнительно молодая область знания, насчитывающая приблизительно двести лет. И это несмотря на то, что исследования в области цвета проводились с давних времен.
Вопросами цвета занимались художники в эпоху Возрождения, художники западной Европы более позднего времени, русские художники Чистяковской школы, уже упомянутые импрессионисты, основоположники дизайна в Германии и России, и даже поэты и музыканты. Если брать научный аспект, то значительные исследования в области цвета проводил Исаак Ньютон, выдвинувший, ко всему прочему, удивительное предположение о связи цвета и музыки, снисходительно отвергнутое поздними исследователями. Как цельное знание цветоведение сформировалось в результате обобщения необходимого количества знаний в области цвета.
В настоящее время мы можем сказать, что цветоведение — это наука, изучающая причины возникновения цвета, его характеристики, а также влияние на природу и на человека, как на часть природы. При этом, влияние может быть физическим, психологическим и эстетическим. Нас, в данном случае, будет интересовать влияние эстетическое, и, в определенной мере, психологическое, словом, то, что наиболее важно и интересно для художника.
Восприятие цвета невозможно без источника света, — в абсолютной темноте мы ничего не увидим. Свет идет от Солнца и других небесных тел: Луны и ярких звёзд, порой теряющихся в электрическом свете современных мегаполисов. Свет идет от костра, свечи и раскаленных металлов. Важно в данном случае то, что цвет неотделим от света, как природного, так и искусственного.
В этой связи невольно напрашивается следующая схема восприятия цвета. Луч света, попадая на поверхность предмета, отражается с ее цветом в наш зрительный аппарат, глаза, и таким образом мы его видим. Казалось бы, всё просто и понятно, но на самом деле все обстоит гораздо сложнее. Исследования ученых-физиков показывают, что видимый нами цвет предмета содержится в самом источнике света, и об этом необходимо вкратце сказать.
Вряд ли найдется человек, который не испытывал бы чувство восхищения и удивления при виде природного явления, называемого радугой и состоящего из семи цветов, порядок расположения которых обозначен мнемонической фразой: «Каждый охотник желает знать, где сидит фазан». Первые буквы слов напоминают нам о порядке и названии цветов в радуге: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Мне пришлось видеть радугу самых различных видов, и об этом можно было бы написать отдельную статью. Но чаще всего, нам встречается радуга-дуга на фоне уходящей дождевой тучи, как только выглянет солнце.
Объясняется это необыкновенно красивое природное явление тем, что лучи солнца, проходя через воздух, насыщенный мелкими каплями воды, и преломляясь через них, раскладываются на семь отдельных цветовых лучей, называемых цветовым спектром. Забегая вперед, можно сказать, что, соединив вместе цветовые лучи, мы снова получим бесцветный световой луч.
Полосу спектра (радугу) можно получить и искусственным путем, пропустив луч света через прозрачную призму, которая разложит его на семь цветов. То же самое мы часто наблюдаем в домашних условиях при попадании луча света на боковую грань зеркала, или другого стеклянного предмета. Цвета спектра являются основными цветами в природе. Это проверил опытным путем Исаак Ньютон, пропуская через призму в отдельности каждый из семи цветов, при этом они не раскладывались на составляющие.
Теперь самая простая схема восприятия нами того или иного цвета выглядит следующим образом. Луч света, состоящий из семи цветов попадает, к примеру, на зеленую поверхность травы. При этом шесть цветов, травой поглощаются, а зеленый, отражаясь, попадает к нам в глаза. Таким образом мы видим зелёный цвет травы. Если, при этом появляются желтые одуванчики, то они будут отражать желтые лучи спектра и т. д.
Цветовой спектр является видимой частью огромной шкалы электромагнитных колебаний. Представьте себе миллиметр — величину, доступную нашему глазу — и разделите её на тысячу частей, это будет микрон, а затем микрон, в свою очередь, разделите также, на тысячу частей, это и будет миллимикрон (ммк). Красный цвет, с которого начинается спектр, мы видим при 625-740 ммк, а фиолетовый, которым он заканчивается, при 380-440 ммк. То есть, все видимые цветовые волны находятся в пределах одного микрона, или тысячной части миллиметра.
Теперь изобразим полоску спектра солнечного света, как основного на земле (Таблица 1).
Глядя на неё, можно заметить, что красные и оранжевые цвета занимают большие участки спектра по отношению к другим цветам. Для наглядности разграничим цвета между собой (1б). Надо отметить, что любой источник света, включая огонь и раскаленные вещества, имеет свой характерный спектр, но состоящий из тех же семи цветов. В нашей работе мы будем использовать спектр с равномерно расположенными цветами (1в), поскольку это будет удобно при построении схем и цветового круга, о чем речь пойдет далее.
Посмотрим внимательно на цветовое сочетание спектра. Прежде всего, оно очень красиво. При этом, каждый последующий цвет гармонично «вытекает» из предыдущего. Часто похожее сочетание цветов мы встречаем в природе, особенно при восходе и закате солнца.
Есть и ещё одна удивительная особенность спектра: все его цвета являются противоположными по отношению друг другу. Это можно проверить следующим образом:
Положите перед собой полоску спектра и посмотрите в её середину, не мигая, в течение тринадцати секунд, затем быстро переведите взгляд на чистый лист бумаги. Через несколько секунд вы увидите светящуюся цветовую полоску, такого же размера, на которой цвета поменяют свои места: на месте красного появится зелено-голубой, на месте оранжевого — сине-голубой, на месте желтого — сине-фиолетовый, на месте зеленого — фиолетово-красный, на месте голубого — красно-оранжевый, на месте синего — оранжево-желтый, на месте фиолетового — желто-зеленый.
Такой эффект объясняется защитной реакцией наших глаз на длительное цветовое воздействие, которая создает цвет противоположный.
Для того, чтобы картина с противоположными цветами стала наглядной, без использования, зрительного упражнения, возьмем цветовую полосу и замкнём её кольцом, соединив красный цвет с фиолетовым. Получится цветовой круг с диаметрально расположенными противоположными цветами (таблица 2).
Для еще большей наглядности, между основными цветами расположим промежуточные, и тогда очень хорошо будут видны все противоположные цвета, которые часто называют дополнительными (2б).
Между основными цветами можно расположить бесчисленное множество оттенков, но есть при этом разумные ограничения. Разные авторы работ по цветоведению выбирают свой, наиболее удобный вариант круга. Швед Оствальд, например, строит свой круг на основе восьми цветов, располагая пурпурный цвет между красным и фиолетовым.
Иногда используют шесть цветов, убирая голубой, якобы несуществующий в природе. Также, и количество промежуточных цветов у разных авторов берется по разному. Мне же кажется, что в основе цветового круга должно быть семь цветов, как это существует в цветовом спектре.
Таким образом, между основными цветами спектра располагаются промежуточные, содержащие равное количество основных цветов, что позволяет хорошо увидеть противоположные (дополнительные) цвета. Кроме этого, мной предлагается ввести еще четырнадцать оттенков. Возьмем, например, оранжевый и красный цвет.
Между ними будет располагаться промежуточный, то есть содержащий в равной мере тот и другой цвет. Теперь, между оранжевым и промежуточным расположится красно-оранжевый оттенок, тогда как, между красным и промежуточным — оранжево-красный. Как видно, это не одинаковые оттенки, поскольку один из них ближе к оранжевому, другой, к красному цвету. Акцент на втором слове, при определении оттенка, как раз и указывает на близость к основному спектральному цвету.
При взгляде на спектральный круг, невольно возникает вопрос о том, как такое небольшое количество цвета позволяет нам увидеть бесконечное множество сложнейших оттенков в природе? Увеличение цветовых промежуточных оттенков в круге лишь отчасти отвечает на поставленный вопрос, поскольку все эти оттенки сохраняют чистый спектральный характер. Более полный ответ даст нам знакомство с тремя цветовыми характеристиками, о которых речь пойдет в следующей главе.
Источник: nazart.ru