Люди обожают истории о конце света. Мы ждали его в 1980 году, затем в 1999, 2005 и 2012 гг. К слову, если посмотреть список дат конца света, окажется, что наши предки жили в ожидании апокалипсиса на протяжении столетий.
День страшного суда, падение астероида, инопланетное вторжение, запуск Большого адронного коллайдера (БАК) и уничтожение человечества искусственным интеллектом – лишь малая часть из подобных «сценариев». Однако главная и наиболее реальная угроза – конец света в результате ядерной войны – переживает ренессанс времен Карибского кризиса. И хотя мировой ядерный арсенал значительно сократился и составляет около 13 тысяч боеголовок, этого количества достаточно, чтобы стереть человечество с лица Земли. С каждым днем вероятность ядерной войны растет и, кажется, так близко к самоуничтожению мы еще не подходили. Об этом свидетельствуют метафорические Часы судного дня, стрелка которых замерла на отметке без 100 секунд «полночь», что символизирует начало ядерной войны.
Атомная и водородная бомбы,какая мощнее? И в чём их отличие?
Человечество находится в шаге от самоуничтожения
Ядерное оружие – устройство, предназначенное для высвобождения энергии взрывным способом в результате ядерного деления, ядерного синтеза или комбинации этих двух процессов.
Мировой ядерный арсенал
Самое опасное оружие на земле представляет собой комплекс ядерных боеприпасов и включает ракеты, торпеды, самолеты и различные средства управления. Сам факт существования ядерного оружия увеличивает вероятность его применения. При этом взрыв всего одной бомбы может уничтожить целый город, так как его действие основано на поражающих факторах ядерного или термоядерного взрыва – разрушительной энергии, получаемой в результате деления атомных ядер.
Согласно оценкам, в мире насчитывается примерно 13 080 ядерных боеголовок. И хотя это намного меньше, чем было у США или СССР на пике холодной войны, все больше стран становятсяобладателями оружия «Судного дня».
Наибольшим количеством ядерного оружия сегодня обладает Россия, в распоряжении которой находится 6257 единиц. Второе место занимают Соединенные Штаты с 5550 ядерными боеголовками, а на третьем располагается Китай в наличии которого 350 боеголовок.
- Россия — 6257 единиц яо.
- США — 5550 единиц яо
- Китай — 350 единиц яо (активно расширяет ядерный арсенал)
- Франция — 290 единиц яо
- Великобритания — 225 единиц яо
- Пакистан — 165 единиц яо
- Индия — 156 единиц яо
- Израиль — единиц яо
- Северная Корея – 40-50 единиц яо (приблизительно)
Первым ядерным оружием были бомбы, доставленные самолетами. Позже им на смену пришли боеголовки для стратегических баллистических ракет, а в результате дальнейших разработок появились боеприпасы меньшего размера, в том числе для артиллерийских снарядов, торпед, баллистических и крылатых ракет меньшей дальности.
Мировой ядерный арсенал
Отметим, что в глобальном масштабе общий запас ядерного оружия действительно сокращается, однако это происходит намного медленнее чем за последние 30 лет. На данный момент примерно 2000 американских, российских, британских и французских боеголовок находятся в состоянии повышенной готовности.
Применение ядерного оружия
Последствия применения ядерного оружия мир осознал вскоре после окончания Второй Мировой войны: 6 августа 1945 года американский бомбардировщик сбросил первую бомбу на японский город Хиросима, а три дня спустя под ударом оказался Нагасаки. Бомбардировки японских городов превратили ядерное оружие в основное средством ведения войны и положили начало гонке вооружений между США и СССР.
Согласно Бюллетеню ученых-атомщиков, гонка достигла своего пика в 1986 году, когда в СССР было более 40 000 ядерных боеголовок, а в США — 23 000.
США — единственная страна, которая использовала атомную бомбу в войне. «Малыш», мощностью 15 кт, была сброшена на Хиросиму, а вторая – «Толстяк», мощностью 20 кт – на Нагасаки в августе 1945 года.
В 1986 году взрыв ядерного реактора на Чернобыльской АЭС стал очередным доказательством того, что несет в себе не только использование ядерного оружия, но и ошибки в управлении атомными станциями. Последствия чернобыльской аварии мир ощущает до сих пор.
Еще одна авария произошла на японской атомной электростанции «Фукусима-1» в марте 2011 года. Причиной катастрофы стало мощное землетрясение, за которым последовало цунами с высотой волн превышающих 10 метров. По Международной шкале ядерных и радиологических событий, аварии на АЭС присвоен 7-ой уровень опасности.
Подробнее о том, что сегодня происходит в Зоне отчуждения Чернобыльской АЭС подробно рассказывал мой коллега Андрей Жуков, рекомендую к прочтению.
Ядерный взрыв
Спустя микросекунды после взрыва ядерной бомбы энергия, высвобождаемая в виде рентгеновских лучей, нагревает окружающую среду и образуя огненный шар из перегретого воздуха, внутри которого температура и давление настолько экстремальны, что превращают всю материю в горячую плазму субатомных частиц (такие же процессы происходят в ядрах звезд, включая Солнце).
Взрывная волна, на долю которой приходится примерно половина взрывной энергии бомбы, первоначально распространяется быстрее скорости звука, но быстро замедляется из-за потери энергии при прохождении через атмосферу. Вскоре после того, как ядерный взрыв высвободил большую часть энергии, огненный шар начинает остывать и подниматься, превращаясь в знакомое грибовидное облако.
У ядерного взрыва три механизма поражения: ударная волна, вспышка видимого и инфракрасного излучения, а также гамма-излучение.
В конечном итоге ветер разносит высокорадиоактивную смесь расщепленных по округе, подвергая выживших почти смертельной дозой ионизирующего излучения. Степень радиационного загрязнения зависит от мощности бомбы: для оружия мощностью в сотни килотонн зона непосредственной опасности может охватить тысячи квадратных километров.
Еще больше интересных статей о новейшем оружии, включая биологическое, читайте на нашем канале в Яндекс.Дзен – там регулярно выходят статьи, которых нет на сайте!
Несмотря на то, что мировой ядерный арсенал значительно сократился, разработка новых, более эффективных атомных бомб продолжается (в мире существуют разные виды этого смертельного оружия). Однако компактность атомной бомбы не изменит последствия взрыва и приведет к гибели сотен тысяч, а возможно и миллионов человек.
Термоядерное оружие
Термоядерное оружие (или водородная бомба) обладает чрезвычайной взрывной силой в результате ядерного синтеза — процесса формирования более тяжелого ядра из двух легких при крайне высокой температуре. Взрыв водородной бомбы может разрушить строения в радиусе полутора километров и вызвать огненные бури, а от яркого белого света можно ослепнуть. Радиоактивные осадки после взрыва водородной бомбы заражают воду и почву на сотни лет.
Термоядерное оружие может быть в тысячи раз мощнее атомных бомб – его мощность измеряется мегатоннами в тротиловом эквиваленте. В 1952 году США были первой страной, успешно испытавшей водородную бомбу мощностью 10 Мт. И хотя последствия взрыва термоядерной бомбы более разрушительны, создать их намного сложнее.
Взрыв компактной водородной бомбы приведет к масштабному заражению радиацией.
Малогабаритное термоядерное оружие называют нейтронной бомбой (или усиленными радиационными боеголовками). Это оружие можно эффективно использовать против танковых и пехотных формирований на традиционном поле боя, не затрагивая ближайшие населенные пункты в радиусе нескольких километров. Главная опасность этого вида вооружений заключается в выбросе большого количества радиоактивных осадков.
Почему даже небольшая ядерная война приведет к массовому голоду на планете? Ответ здесь!
«Грязная бомба»
Помимо атомных и водородных бомб существуют так называемые «грязные бомбы», которые не считаются ядерными (тем не менее при их детонации в окружающую среду может попасть радиоактивный материал). Этот тип вооружений также называют радиологическим оружием. «Грязная бомба» как правило сочетает в себе обычные взрывчатые вещества, например динамит и уран, а в процессе производства остается много отходов.
«грязная бомба» — это обычное взрывное устройство, окруженное оболочкой, содержащей высокоактивные радиоактивные изотопы.
По мнению большинства аналитиков использование «грязной бомбы» носит скорее психологический, чем физический характер и может спровоцировать массовую панику. Эксперты отмечают, что большая часть радиоактивного материала от взрыва грязной бомбы будет рассеяна на несколько городских кварталов или несколько квадратных километров.
А вы знаете как работают АЭС? И что будет, если их отключить? Ответ здесь, не пропустите!
Несмотря на то, что создать грязную бомбу несложно – главное добыть радиоактивный материал (труднее всего добыть плутоний и уран, а также утилизированное ядерное топливо), это оружие ни разу не применялось.
Ограниченная ядерная война
Как видите, существует масса способов самоуничтожения с помощью ядерного оружия. Шанс погибнуть в результате ядерного взрыва или лучевой болезни сегодня выше, чем за последние 70 лет. Есть в этом и что-то обидное – вместо инопланетного вторжения или восстания роботов нас ожидает ядерная зима (и ужасная смерть).
В то же самое время в последние годы не утихают разговоры об ограниченном применении ядерного оружия в качестве способа ведения войны. Однако многие эксперты уверенны, что ограниченная ядерная война вряд ли таковой останется.
То, что начинается с одного тактического ядерного удара или обмена ядерными ударами между странами, может перерасти в полномасштабную войну от которой никто не сможет спрятаться, – полагают специалисты.
Не такое будущее мы себе представляли
Долгосрочные региональные и глобальные последствия ядерных взрывов в общественных дискуссиях затмеваются ужасающими, очевидными локальными последствиями применения атомных бомб. Взрыв, радиоактивные осадки и электромагнитный импульс (интенсивный всплеск радиоволн, который может повредить электронное оборудование) — все это желаемые с военной точки зрения результаты.
При этом пожары и другие глобальные климатические изменения в результате ядерной войны могут не учитываться в военных планах и ядерных доктринах. Использование оружия Судного дня может показаться кому-то неплохим способом выиграть войну, однако ущерб, нанесенный ядерным оружием, может привести к гибели более половины населения Земли.
Никто не спрячется
С 1980-х годов ученые занимались исследованием долгосрочных широкомасштабных последствий ядерной войны для земных экосистем. Разработав радиационно-конвективную модель климата американские ученые показали, что ядерная зима может наступить из-за дыма от массовых лесных пожаров, в результате применения ядерного оружия или после ядерной войны.
Мир стоит на пороге ядерной войны
Российские исследователи тоже разработали климатические модели, согласно которым рост глобальной температуры на суше будут ниже, чем в океанах, что может привести к сельскохозяйственному коллапсу во всем мире. Это означает, что через два года после окончания ядерной войны человечество погибнет от голода.
Более того, теория ядерной зимы, первоначально оспариваемая из-за неточных результатов, сегодня поддерживается сложными климатическими моделями, – отмечают специалисты.
И хотя основные механизмы ядерной зимы, описанные в ранних исследованиях, верны, новейшие расчеты показали, что последствия ядерной войны будут намного хуже, чем считалось ранее. Словом, никто не выживет (хотя попытаться можно). О том, что делать и как вести себя после ядерного взрыва мы рассказывали здесь (надеемся, никому не придется воспользоваться ими на практике).
Источник: hi-news.ru
uCrazy.ru
Ядерная (атомная) и термоядерная (водородная) бомбы очень похожи друг на друга. Обе бомбы являются оружием массового поражения и основываются на ядерной реакции, приводящей к высвобождению колоссальной энергии. Но чем они отличаются и какая из этих бомб мощнее?
Как работает ядерная бомба
Принцип ядерного оружия прост: тяжёлые радиоактивные химические элементы распадаются на более лёгкие с выделением энергии. При этом реакция распада — цепная: свободные нейтроны ударяются по ядру атома. В результате этого атом расщепляется и теряет несколько нейтронов, которые также врезаются в соседние атомы, запуская цепную реакцию.
В качестве делящегося вещества в атомных бомбах применяют уран-235 или плутоний-239. Уран — элемент природный. Его обогащают изотопами U-235. А вот плутоний настолько редок, что его не добывают, а изготавливают искусственно.
Как работает термоядерная бомба и в чём её отличие?
В отличие от атомного оружия, взрыв водородного оружия заключен не в распаде, а в синтезе тяжелых элементов. То есть в объединении нескольких легких ядер атомов в одно тяжелое.
Если передать нескольким атомам огромную энергию, то они преодолевают энергию сопротивления друг к другу и объединяются, создавая новый элемент. Но как достичь такой огромной температуры и высокого давления? Очень просто: сначала взорвать маленькую атомную бомбу, а полученная энергия пойдёт на термоядерный синтез!
Знаменитая «Царь-бомба», самое мощное взрывное устройство за всю историю человечества, была именно водородной. В ней умещалась также и атомная, для начала реакции
В водородной бомбе используют изотопы водорода дейтерий и тритий, которые, сливаясь, образуют ядра гелия. И теоретически, мощность боеприпаса здесь бесконечно огромна, ведь можно соединять элементы вместе, пока не закончится что соединять!
Поэтому главное отличие ядерной и термоядерной бомбы заключаются в принципе достижения взрыва. Взрыв атомной бомбы достигается за счет реакции деления тяжелых ядер, а взрыв водородной бомбы, напротив, получается в результате соединения двух легких элементов в более тяжёлый.
Ну если для начала реакции в водородной бомбе используют атомную, то что может быть мощнее? 🙂 Конечно, термоядерное оружие куда сильнее ядерного. Для сравнения, мощность знаменитой атомной бомбы «Малыш», упавшей в Японии составила 18 килотонн ТНТ. Советская водородная бомба «Царь-бомба» достигает 58 мегатонн ТНТ, что в 3000 раз больше!
Интересно также, что чистого термоядерного оружия, т.е. в котором не нужно использовать энергию атомного взрыва, так и не придумали. В СССР велись разработки, но после его распада они прекратились.
Источник: ucrazy.ru
Разница между атомной и водородной бомбой
Как известно, основным двигателем прогресса человеческой цивилизации является война. И многие «ястребы» оправдывают массовые истребления себе подобных именно этим. Вопрос всегда был спорным, а появление ядерного оружия бесповоротно превратило знак плюс в знак минус. Действительно, зачем нужен прогресс, который в конечном итоге нас и уничтожит?
Причем даже в этом самоубийственном деле человек проявил свойственную ему энергию и изобретательность. Мало того, что он придумал оружие массового уничтожения (атомную бомбу) – он продолжил его совершенствовать, чтобы убить себя быстро, качественно и гарантированно. Примером такой деятельной активности может служить очень быстрый прыжок на следующую ступеньку развития атомных военных технологий – создание термоядерного оружия (водородная бомба). Но оставим в стороне нравственный аспект этих суицидальных наклонностей и перейдем к вопросу, вынесенному в заголовок статьи, – чем отличается атомная бомба от водородной?
Немного истории
Там, за океаном
Как известно, американцы – самый предприимчивый народ в мире. Чутье на все новое у них огромное. Поэтому не стоит удивляться тому, что первая атомная бомба появилась именно в этой части света. Дадим небольшую историческую справку.
- Первым этапом на пути к созданию атомной бомбы можно считать эксперимент двух немецких ученых О. Гана и Ф. Штрассмана по расщеплению атома урана на две части. Этот, так сказать, еще неосознанный шаг был сделан в 1938 году.
- Нобелевский лауреат француз Ф. Жолио-Кюри в 1939 году доказывает, что деление атома приводит к цепной реакции, сопровождающейся мощным выделением энергии.
- Гений теоретической физики А. Эйнштейн поставил свою подпись под письмом (в 1939 г.) на имя президента США, инициатором которого был другой физик-атомщик Л. Силард. В результате еще до начала Второй мировой войны в США было принято решение приступить к разработке атомного оружия.
- Первое испытание нового оружия было проведено 16 июля 1945 года в северной части штата Нью-Мексико.
- Меньше чем через месяц на японские города Хиросима и Нагасаки (6 и 9 августа 1945 г.) были сброшены 2 атомные бомбы. Человечество вступило в новую эру – теперь оно было способно уничтожить само себя за несколько часов.
Американцы впали в настоящую эйфорию от результатов тотального и молниеносного разгрома мирных городов. Штабные теоретики ВС США тут же принялись за составление грандиозных планов, заключающихся в полном стирании с лица Земли 1/6 части света – Советского Союза.
Догнали и перегнали
В Советском Союзе тоже не сидели сложа руки. Правда, присутствовало некоторое отставание, вызванное решением более неотложных дел – шла Вторая мировая война, основное бремя которой лежало на стране Советов. Однако американцы недолго носили желтую майку лидера. Уже 29 августа 1949 года на полигоне под г. Семипалатинском был впервые испытан атомный заряд советского образца, созданный в ударные сроки русскими атомщиками под руководством академика Курчатова.
И пока расстроенные «ястребы» из Пентагона пересматривали свои амбициозные планы по уничтожению «оплота мировой революции», Кремль нанес упреждающий удар – в 1953 году 12 августа были проведены испытания новой разновидности ядерного оружия. Там же, в районе г. Семипалатинска, была взорвана первая в мире водородная бомба под кодовым названием «Изделие РДС‑6с».
Данное событие вызвало настоящую истерику и панику не только на Капитолийском холме, но и во всех 50 штатах «оплота мировой демократии». Почему? Какое отличие атомной бомбы от водородной ввергло в ужас мировую супердержаву? Ответим сразу. Водородная бомба по своей боевой мощи намного превосходит атомную.
При этом она обходится значительно дешевле, чем эквивалентный атомный образец. Рассмотрим эти различия более подробно.
Что такое атомная бомба?
Принцип действия атомной бомбы основан на использовании энергии, возникающей в результате нарастающей цепной реакции, вызванной делением (расщеплением) тяжелых ядер плутония или урана-235 с последующим образованием более легких ядер.
Сам процесс называют однофазным, и протекает он следующим образом:
- После детонации заряда вещество, находящееся внутри бомбы (изотопы урана или плутония), переходит в стадию распада и начинает захват нейтронов.
- Процесс распада нарастает, как снежная лавина. Расщепление одного атома приводит к распаду нескольких. Возникает цепная реакция, ведущая к разрушению всех атомов, находящихся в бомбе.
- Начинается ядерная реакция. Весь заряд бомбы превращается в единое целое, и его масса переходит свою критическую отметку. Причем вся эта вакханалия длится очень недолго и сопровождается мгновенным выделением огромного количества энергии, что в конечном итоге и приводит к грандиозному взрыву.
Кстати, эта особенность атомного однофазного заряда – быстро набирать критическую массу – не позволяет бесконечно увеличивать мощность данного вида боеприпаса. Заряд может быть мощностью сотни килотонн, но чем ближе он к мегатонному уровню, тем меньше его эффективность. Он просто не успеет полностью расщепиться: произойдет взрыв и часть заряда так и останется неиспользованной – ее разметает взрывом. Эта проблема была решена в следующем виде атомного боеприпаса – в водородной бомбе, которая также называется термоядерной.
Что такое водородная бомба?
В водородной бомбе происходит несколько другой процесс высвобождения энергии. Он основан на работе с изотопами водорода – дейтерия (тяжелый водород) и трития. Сам процесс делится на две части или, как принято говорить, является двухфазным.
- Первая фаза – это когда главным поставщиком энергии является реакция расщепления тяжелых ядер дейтерида лития на гелий и тритий.
- Вторая фаза – запускается термоядерный синтез на основе гелия и трития, что приводит к мгновенному нагреву внутри боевого заряда и, как следствие, вызывает мощный взрыв.
Благодаря двухфазной системе термоядерный заряд может быть какой угодно мощности.
Примечание. Описание процессов, происходящих в атомной и водородной бомбе, – далеко не полное и самое примитивное. Оно дано только для общего понимания различий между этими двумя видами оружия.
Сравнение
Что в сухом остатке?
О поражающих факторах атомного взрыва знает любой школьник:
- световое излучение;
- ударная волна;
- электромагнитный импульс (ЭМИ);
- проникающая радиация;
- радиоактивное заражение.
То же самое можно сказать и о термоядерном взрыве. Но. Мощь и последствия термоядерного взрыва значительно сильней, чем атомного. Приведем два общеизвестных примера.
«Малыш»: черный юмор или цинизм дяди Сэма?
Атомная бомба (кодовое имя «Малыш»), сброшенная на Хиросиму американцами, до сих пор считается «эталонным» показателем для атомных зарядов. Ее мощь примерно составила от 13 до 18 килотонн, и взрыв был идеален по всем показателям. Позже не раз проводились испытания более мощных зарядов, но не намного (20-23 килотонны). Однако они показывали результаты, мало превышающие достижения «Малыша», а потом и вовсе прекратились. Появилась более дешевая и сильная «водородная сестра», и смысла совершенствовать атомные заряды уже не было. Вот что получилось «на выходе» после взрыва «Малыша»:
- Ядерный гриб достиг высоты 12 км, диаметр «шляпки» был около 5 км.
- Мгновенное высвобождение энергии при ядерной реакции вызвало температуру в эпицентре взрыва 4000 °С.
- Огненный шар: диаметр около 300 метров.
- Ударная волна выбивала стекла на расстоянии до 19 км, а ощущалась значительно дальше.
- Одномоментно погибло около 140 тыс. человек.
Царица всех цариц
Последствия взрыва самой мощной на сегодняшний день из испытанных водородных бомб, так называемой Царь-бомбы (кодовое название АН602), превзошли все проведенные до этого взрывы атомных зарядов (не термоядерных), вместе взятые. Бомба была советская, мощностью в 50 мегатонн. Ее испытания проводились 30 октября 1961 года в районе Новой Земли.
- Ядерный гриб вырос на 67 км в высоту и примерно 95 км был диаметр верхней «шляпки».
- Световое излучение било на расстояние под 100 км, вызывая ожоги третьей степени.
- Огненный клубок, или шар, разросся до 4,6 км (радиус).
- Звуковая волна была зафиксирована на расстоянии 800 км.
- Сейсмическая волна трижды обогнула планету.
- Ударная волна ощущалась на расстоянии до 1000 км.
- Электромагнитный импульс создавал мощные помехи в течение 40 минут на несколько сот километров от эпицентра взрыва.
Можно только фантазировать, что случилось бы с Хиросимой, если бы на нее был сброшен такой монстр. Скорей всего, исчез бы не только город, но и сама Страна Восходящего Солнца. Ну, а теперь приведем все, что мы рассказали, к общему знаменателю, то есть составим сравнительную таблицу.
Таблица
Атомная бомба | Водородная бомба |
Принцип действия бомбы построен на делении ядер урана и плутония, вызывающих прогрессирующую цепную реакцию, в результате чего происходит мощный выброс энергии, приводящий к взрыву. Этот процесс получил название однофазного, или одноступенчатого | Ядерная реакция идет по двухступенчатой (двухфазной) схеме и в ее основе лежат изотопы водорода. Сначала происходит деление тяжелых ядер дейтерида лития, потом, не дожидаясь окончания деления, начинается термоядерный синтез с участием полученных элементов. Оба процесса сопровождаются колоссальным выделением энергии и в конечном итоге заканчиваются взрывом |
В силу определенных физических причин (см. выше) максимальная мощность атомного заряда колеблется в пределах 1 мегатонны | Мощность термоядерного заряда почти неограниченная. Чем больше исходного материала, тем сильней будет взрыв |
Процесс создания атомного заряда достаточно сложен и дорог | Водородная бомба значительно проще в изготовлении и не так дорога |
Итак, мы выяснили, в чем разница между атомной и водородной бомбой. К сожалению, наш маленький анализ только подтвердил тезис, высказанный в начале статьи: прогресс, связанный с войной, пошел по гибельному пути. Человечество встало на грань самоуничтожения. Осталось только нажать кнопку. Но не будем заканчивать статью на столь трагической ноте.
Мы очень надеемся, что разум, инстинкт самосохранения, в конце концов, победят и нас ждет мирное будущее.
Источник: otherness.ru
В чём разница между атомной и водородной бомбой?
Начать следует с того, что и так называемая атомная, и водородная бомбы относятся к ядерному оружию, ещё шире — к категории оружия массового поражения. В основе обеих лежат физические процессы, происходящие в ядрах элементов, с выделением энергии — это может быть процесс распада или синтеза.
«Атомная бомба» — вид ядерного оружия, энергия взрыва которого высвобождается в ходе реакции деления ядер тяжёлых элементов с образованием более лёгких элементов. Чаще всего используется изотоп урана-235 или плутоний. Цепная реакция деления ядер является некотролируемой и лавинообразной. Данный вид ядерного оружия является однофазным или по-другому одноступенчатым — в нём задействуется только один процесс.
Водородная бомба — вид ядерного оружия, энергия взрыва которого высвобождается в ходе термоядерной реакции синтеза ядер тяжёлых элементов из более лёгких. Чаще всего в качестве сырья используется изотоп водорода дейтерий (отсюда и название), а в ходе реакции происходит образование ядра гелия. Данный вид ядерного оружия является двух- (и более) фазным или дву- (и более) ступенчатым. При этом в качестве первой ступени обычно выступает реакция деления ядер (чаще всего уран-238), термоядерный синтез происходит на второй ступени.
За водородной бомбой закреплялось так же название «чистого оружия», поскольку радиоактивного заражения в теории от неё оставалось меньше. Связано это с тем, что реакции деления (ввиду которых и остаётся радиоактивное заражение) всё равно используются в данном виде оружия, так что его нельзя никак назвать «чистым», к концу 70 годов 20 века это выходит из употребления. Тем не менее, степень радиоактивности бомбы можно ограничить, не прибегая к использованию третьей ступени и минимизируя первую. В атомной же бомбе радиационное поражение выступает одним из важных разрушительных факторов, этого у неё не отнять.
Ещё одно немаловажное отличие — мощность бомбы. Теоретически, мощность термоядерного оружия не ограничена никакими условиями, кроме количества сырья — что позволяет рассуждать о потенциальной возможности создания бомбы, уничтожающей всю Землю. Мощность водородной бомбы во много раз превышает максимальную мощность атомной бомбы.
Источник: yaznal.ru
Чем отличаются атомная, ядерная и водородная бомбы
Для точного ответа на вопрос придётся серьёзно углубиться в такую отрасль человеческого знания, как ядерная физика — и разобраться с ядерно-/термоядерными реакциями.
Изотопы
Из курса общей химии мы помним, что материя вокруг состоит из атомов разных «сортов», причём их «сортность» определяет, как именно они будут вести себя в химреакциях. Физика добавляет, что происходит это по причине тонкого строения атомного ядра: внутри ядра находятся протоны и нейтроны, его формирующие — а вокруг по «орбитам» безостановочно «носятся» электроны. Протоны обеспечивают положительный заряд ядра, а электроны — отрицательный, его компенсирующий, из-за чего атом обычно электронейтрален.
С химической точки зрения «функция» нейтронов сводится к тому, чтобы «разбавить» единообразие ядер одного «сорта» ядрами с несколько различающейся массой, поскольку на химические свойства повлияет лишь заряд ядра (через число электронов, за счёт которых атом может образовывать химсвязи с другими атомами). С точки же зрения физики нейтроны (как и протоны) участвуют в сохранении атомных ядер за счёт специальных и очень мощных ядерных сил — в противном бы случае ядро атома мгновенно разлетелось бы из-за кулоновского отталкивания одноимённо заряженных протонов. Именно нейтроны позволяют существовать изотопам: ядрам с одинаковыми зарядами (то есть идентичными химсвойствами), но при этом отличным по массе.
Важно, что создавать ядра из протонов/нейтронов произвольным образом нельзя: есть их «магические» комбинации (на самом деле магии тут нет никакой, просто физики условились так называть особенно энергетически выгодные ансамбли из нейтронов/протонов), которые невероятно стабильны — но «отходя» от них всё дальше можно получить радиоактивные ядра, которые «разваливаются» сами собой (чем дальше они отстоят от «магических» комбинаций — тем их распад вероятнее со временем).
Нуклеосинтез
Чуть выше выяснилось, что согласно определённым правилам можно «конструировать» атомные ядра, создавая из протонов/нейтронов всё более тяжёлые. Тонкость же в том, что процесс этот энергетически выгоден (то есть протекает с выделением энергии) лишь до определённого предела, после чего на создание всё более тяжёлых ядер требуется потратить больше энергии чем выделяется при их синтезе, а сами они становится весьма неустойчивыми. В природе этот процесс (нуклеосинтез) идёт в звёздах, где чудовищные давления и температуры «утрамбовывают» ядра так плотно, что некоторая их часть сливается, образуя более тяжёлые и выделяя энергию, за счёт которой звезда светит.
Условная «граница эффективности» проходит по синтезу ядер железа: синтез более тяжёлых ядер энергозатратен и железо в итоге «убивает» звезду, а более тяжёлые ядра образуется либо в следовых количествах из-за захвата протонов/нейтронов, либо массово в момент гибели звезды в виде катастрофической вспышки сверхновой, когда потоки излучений достигают поистине чудовищных величин (одной световой энергии в момент вспышки типичная сверхновая выделяет столько, сколько наше Солнце за примерно миллиард лет своего существования!)
Ядерные/термоядерные реакции
Итак, теперь уже можно дать необходимые определения:
Термоядерная реакция (она же реакция синтеза или по-английски nuclear fusion) — такой вид ядерной реакции, где более лёгкие ядра атомов за счёт энергии их кинетического движения (тепла) сливаются в более тяжёлые.
Ядерная реакция деления (она же реакция распада или по-английски nuclear fission) — такой вид ядерной реакции, где ядра атомов спонтанно либо под действием частицы «снаружи» распадаются на осколки (обычно две-три более лёгкие частицы либо ядра).
Ядерная реакция деления
В принципе, в обеих типах реакций высвобождается энергия: в первом случае из-за прямой энергетической выгодности процесса, а во втором — высвобождается та энергия, которая во время «смерти» звезды потратилась на возникновение атомов тяжелее железа.
Сущностное отличие ядерной и термоядерной бомб
Ядерной (атомной) бомбой принято называть такое устройство взрывного типа, где основная доля высвобождаемой энергии при взрыве выделяется за счёт ядерной реакции деления, а водородной (термоядерной) — такое, где основная доля энергии произведена посредством реакции термоядерного синтеза. Бомба атомная — синоним бомбы ядерной, бомба водородная — термоядерной.
Строго говоря, все ныне существующие водородные бомбы «попутно» являются ядерными, поскольку «поджигающей спичкой» в них выступает «запальный» ядерный заряд, на краткое мгновение инициирующий примерно такие же условия, как внутри звезды — чтобы термоядерные реакции могли на этот миг «запуститься». Водородная бомба имеет намного большую и разрушительную мощность, чем ядерная бомба. Водородные бомбы не стоят на вооружении не в одной стране мира.
Источник: vchemraznica.ru