Как закалить у 8

3. Графики зависимости твердости (HB) сталей 50 и У12 от вида термообработки.

4. Рисунки и описание микроструктур.

9.5. Контрольные вопросы

1. Дайте определение:

− критической скорости охлаждения;

2. С какой целью проводится термическая обработка стали?

3. У каких сплавов можно повысить прочность при термической обработке?

4. Какая структура получается в доэвтектоидных сталях после отжига, нормализации, закалки?

5. Какая структура получается в заэвтектоидных сталях после отжига, нормализации, закалки?

6. Какая структура получается в стали после низкого, среднего и высокого отпуска?

7. Как и почему изменяется твердость доэвтектоидных сталей при изменении температуры закалки: ниже А1; выше А1, но ниже А3; немного выше А3 значительно выше А3?

8. Как и почему изменяется твердость заэвтектоидных сталей при изменении температуры закалки: ниже А1; выше А1, но ниже Аст;выше Аст?

9. Какая температура закалки дает максимальную твердость в доэвтектоидных и заэвтектоидных сталях?

10. Как изменяются механические свойства стали при повышении температуры отпуска?

11. Какая структура получается в доэвтектоидных сталях после неполной закалки?

12. Какая структура получается в заэвтектоидных сталях после закалки с температуры выше Аст?

13. Какая структура получатся после закалки в масло доэвтектоидных и заэвтектоидных сталей?

14. Почему при закалке в масло по сравнению с закалкой в воду твердость стали понижается?

15. Какие структуры и механические свойства приобретает сталь после улучшения?

16. С какой целью применяют отжиг сталей, нормализацию, закалку, отпуск?

17. Какая окончательная термическая обработка обычно проводится для деталей машин и инструмента?

18. Какой дефект получается при перегреве стали?

19. Как обозначаются конструкционные и инструментальные углеродистые стали?

20. Какие линии на диаграмме Fe-Fe3C обозначаются А1, А3, Аст?

Литература

1. Материаловедение: учебник для вузов / Б. Н. Арзамасов, В. И. Макарова, Г. Г. Мухин и др. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. − 648 с.

2. Геллер Ю. А., Рахштадт А. Г. Материаловедение. − М.: Металлургия, 1975. − 447 с.

3 индивидуальное задание по теме«Термическая обработка сталей»

№ варианта Марка материала детали Вид детали № варианта Марка материала детали Вид детали
У7 шабер рессора
вал полуось
шестерня распред. вал
пружина кулачная шайба
У12 резец У8А кернер
ось шатунный болт
молоток зубчатое колесо
У8 зубило червячное колесо
У13 напильник У7А отвертка
шатун У10А сверло
шпонка У12А плашка
шкив тормозной линейка к малке
рычаг малка
шпиндель станка чертилка
У10 надфиль У10 развертка

Порядок выполнения задания 9

1. Задать способ изготовления заготовки детали. (Заготовка литая, кованая, катаная и др. варианты).

2. Описать процесс термической обработки заготовки перед механической обработкой, с указанием температурных режимов, графиков термической обработки (в координатах температура-время) и изображением макро- и микроструктуры заготовки до и после предварительной термической обработки.

3. Описать процесс термической обработки заданной детали для придания ей оптимальных эксплуатационных свойств.

4. Представить график заключительной термической обработки и указать на нем температуры термической обработки и вид охлаждения.

5. Схематически изобразить микроструктуру детали на разных этапах термической обработки.

Контрольные вопросы

1. В каких координатах представляют графики термической обработки?

2. При какой температуре отпуска образуется в закаленной стали структура сорбит отпуска?

3. От чего зависит закаливаемость стали?

4. От чего зависит прокаливаемость стали?

5. Какие стали практически не закаливаются?

6. Как обозначается критическая точка превращения аустенита в перлит?

7. Какая структура формируется из аустенита при малых степенях его переохлаждения?

8. Какой вид отжига назначают для устранения дендритной ликвации слитков стали?

9. Что называют термическим улучшением стали?

10. Какой вид термической обработки приводит сталь в равновесное состояние?

11. После закалки стали 45 получена структура “мартенсит+феррит”. В чем причина брака?

12. Назовите закалочную среду, обеспечивающую высокую скорость охлаждения.

13. Какой термической обработке подвергают детали после цементации?

14. Как называют мельчайшую феррито-цементитную смесь?

15. От чего зависит твердость феррито-цементитной смеси?

16. Чем отличается сорбит от троостита отпуска?

17. В каких случаях отжиг целесообразно заменять нормализацией?

18. Сталь какой марки чувствительнее к закалочным напряжениям?

19. Какие стали обычно подвергают цементации?

20. В каких случаях назначают среднетемпературный отпуск детали?

Лабораторная работа № 8

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА МЕХАНИЧЕСКИЕ СВОЙСТВА СПЛАВА НА ОСНОВЕ АЛЮМИНИЯ

8.1. Цель работы:

− исследовать и изучить влияние основных параметров термической обработки на механические свойства сплава;

− ознакомиться с основными видами термической обработки сплава;

− установить связь между структурой и диаграммой сплава.

Теоретическое обоснование

Все сплавы на алюминиевой основе по технологическим признакам можно разделить на:

− деформируемые, не упрочняемые термической обработкой;

− деформируемые, упрочняемые термической обработкой;

Деформируемые алюминиевые сплавы, не упрочняемые термообработкой, не имеет фазовых превращений в твердом состоянии (рис. 10.1), т. е. они однофазные. Эти сплавы характеризуются невысокой прочностью, высокой пластичностью и высокой коррозионной стойкостью. К ним относятся сплавы алюминий-марганец (АМц) и алюминий-магний (АМг).

Рис. 8.1. – Классификация алюминиевых сплавов по диаграмме состояния

алюминий-легирующий элемент (схема)

Деформируемые сплавы, упрочняемые, термообработкой являются двухфазными. Наиболее распространенным представителем таких сплавов является дуралюмин (Д1, Д16 и др.) − сплав алюминия с медью, марганцем, магнием.

Дуралюмины хорошо деформируются в холодном и горячем состоянии. После холодной деформации дуралюмины подвергают рекристаллизационному отжигу при температуре 340-370 °С.

Термическая обработка дуралюмина состоит из закалки от температуры 490-510 °С с охлаждением в воде. После закалки дуралюмин подвергают старению, что придает ему высокую прочность и твердость.

Читайте также:  Где можно поймать окуня

Естественное старение происходит при комнатой температуре в течении 5-7 суток. Искусственное старение проводят при 150-180 °С в течение 2-4 часов.

Микроструктура дуралюминов после закалки состоит из светлых кристаллов твердого раствора на основе алюминия и темных включений CuAl2 (рис. 8.2).

Рис. 8.2. – Микроструктура дуралюминия (закалка и старение), 200 x

Литейные сплавы алюминия с кремнием называются силуминами (АЛ2).

Часть диаграммы алюминия с кремнием приведена на рисунке 8.3.

Рис. 8.3. – Диаграмма состояния алюминий-кремний

Эти сплавы, как правило, содержат 6-13 % Si, который ограниченно растворяется в алюминии, образуя α-фазу. При содержании 11,6 % кремния образуется эвтектика, состоящая из α-фазы и практически чистых кристаллов кремния, поэтому механические свойства таких сплавов низки. Механические свойства этих сплавов повышают путем модифицирования.

Силумины с добавками меди, магния и марганца подвергают закалке с температуры 520-540 °С, с целью повышения механических свойств. Искусственное старение проводят при 150-180 °С в течение 10-20 час.

Химический состав (%) и некоторые свойства деформируемых и литейных сплавов на основе алюминия представлены в таблице 1 приложения 2.

Особенность термической обработки алюминиевых сплавов по сравнению со сталью заключается в том, что алюминиевые сплавы имеет очень низкий интервал температур закалки и отпуска, поэтому необходимо соблюдать очень строго температурный режим. Кроме того, соблюдение высокой точности при выполнении термической обработки вызвано тем, что алюминиевые сплавы склонны к перегреву, а исправление перегрева, т. е. измельчение зерна, никакими видами термической обработки получить не возможно. Еще одной особенностью термической обработки являются очень длительные выдержки при нагреве под закалку и особенно при отпуске.

В закаленном твердом растворе атомы элементов в начале распределены равномерно в решетке алюминия, затем постепенно происходит изменение концентрации и перераспределение элементов. Механизм распада пересыщенного твердого раствора закалки происходит во временном и температурном пространстве. На отдельных атомных плоскостях образуются участки, обогащенные медью и другими элементами за счет обеднения других участков; обогащенные участки решетки называются зонами Гинье-Пристона. Возникающая при этих процессах химическая неоднородность приводит к искажениям решетки, возникают напряжения, что и является основной причиной повышения прочности сплавов. Если распад пересыщенного твердого раствора закалки происходит при комнатной температуре, этот процесс называют естественным старением, если при повышенных температурах – искусственным старением.

Порядок выполнения работы

Работу выполняют на круглых образцах для испытаний на растяжение. Материал для изготовления образцов – прутки круглого, квадратного или прямоугольного сечения, а также листы из деформируемых алюминиевых сплавов. Форма, размеры образцов и условия испытаний должны соответствовать ГОСТ 1497-73. Каждый студент выполняет работу на одном-двух отожженных образцах в следующем порядке:

1. Измерить твердость образцов до термической обработки на приборе типа Роквелл. Твердость определить, как среднеарифметическое число трех измерений.

2. Разделить образцы для закалки на три группы:

− образцы первой группы нагреть при температурах до 460-470 °С, поместив их в предварительно нагретую до заданной температуры лабораторную печь;

− второй группы – до 480-490 °С;

− третьей до 500-510 °С.

Время выдержки при температуре нагрева определить из расчета 3 мин. на 1 мм наибольшего диаметра образца. После нагрева образцы охладить в воде (время переноса образцов из печи в воду не более 5 сек.).

3. Зачистить после закалки образцы и измерить твердость на приборе Роквелл. По значениям твердости рассчитывают предел прочности по формуле:

4. Занести данные измерения в таблицу 8.1. Значения твердости Роквелла перевести в твердость по Бринеллю, используя таблицу 2 приложения 1.

5. Подвергнуть закаленные образцы искусственному старению при температурах 100, 150, 185, 200 °С. Длительность выдержки определить в зависимости от времени, отведенного для лабораторных занятий по этой работе. После выдержки в печи образцы охладить на воздухе.

6. Зачистить после старения образцы и измерить твердость на приборе Роквелл. Среднее значение твердости (из 3 замеров) занести в табл.8.1.

Источник: lektsia.com

Закалка стали У8 — технология и температура

Закалкой называют вид термической обработки металлов, который заключается в нагреве выше критической температуры с последующим резким охлаждением (обычно) в жидких средах. Критической называют температуру, при которой происходит изменение типа кристаллической решетки, то есть осуществляется полиморфное превращение. Она определяется она по диаграмме «железо-углерод». фото

Блок: 1/5 | Кол-во символов: 375
Источник: https://metallz.ru/articles/zachem_nuzhna_i_kak_provoditsya_zakalka_stali/

Описание стали У8

Сталь у8 относится к углеродистой инструментальной, выпускаемая по ГОСТ 1435-99 и 1435-54. В ее составе находится углерод (от 0,76 до 0,83%), кремний (от 0,17 до 0,33%), марганец (от 0,17 до 0,33%), никель (не более 0,25%), сера (до 0,028%), фосфор (не более 0,03%), хром (до 0,2%), медь (до 0,25%). Аналогами стали у8 по основным характеристикам являются стали марок у7 и у10.

Сталь марки у8 применяется для изготовления различных инструментов, при эксплуатации которых не происходит нагревания, например, фрез, кернеров, отверток, боковых кусачек, накатных роликов, плоских и витых пружин, комбинированных плоскогубцев, деталей часовых механизмов, разнообразных слесарно-монтажных и деревообрабатывающих инструментов и т. д.

В маркировке углеродистой инструментальной стали на первом месте обязательно находится литера «у», означающая, что данная сталь относится к углеродистым. На втором месте располагается число, показывающее количество углерода, выраженное в десятых долях процента. Например у7, у8, у10 будут иметь в своим составе по 0,7%, 0,8% и 1% углерода соответственно. Так как в конце маркировки не стоит литера «А», то она относится к качественным. Характеристики стали у8а несколько отличаются от стали y8.

Для стали у8 подходит прерывистая закалка. Для ее осуществления нагретую деталь для охлаждения помещают в воду, а потом переносят в масло, где она окончательно охлаждается. Благодаря уменьшению скорости охлаждения в области мартенситного преобразования, удается снизить структурные напряжения. Закалка стали у8 производится при 780 °C, а отпуск — при температуре 400 °C. При этом получается материал с твердостью в 187 МПа.

Читайте также:  Какой прицел поставить на скс

Блок: 2/3 | Кол-во символов: 1672
Источник: http://www.PromGroupChel.ru/steel-u8.html

Свойства стали после закалки

После закалки увеличивается твердость и прочность стали, но при этом повышаются внутренние напряжения и возрастает хрупкость, провоцирующие разрушение материала при резких механических воздействиях. На поверхности изделия появляется толстый слой окалины, который необходимо учитывать при определении припусков на обработку.

Внимание! Некоторые изделия закаляются частично, например, это может быть только режущая кромка инструмента или холодного оружия. В этом случае на поверхности изделия можно наблюдать четкую границу, разделяющую закаленную и незакаленную части. Закаленную часть на клинках называют «хамон», что в переводе на современный язык металлургии означает «мартенсит».

Определение! Мартенсит – основная составляющая структуры стали после закалки. Вид этой микроструктуры – игольчатый или реечный.

Для уменьшения внутренних напряжений и роста пластичности осуществляют следующий этап термообработки – отпуск. При отпуске происходит некоторое снижение твердости и прочности.

Блок: 2/5 | Кол-во символов: 1021
Источник: https://metallz.ru/articles/zachem_nuzhna_i_kak_provoditsya_zakalka_stali/

Применение стали У8

Сталь У8 применяется: для изготовления инструментов, работающих в условиях, не вызывающих разогрева режущей кромки; инструмента для обработки дерева (фрез, зенковок, цековок, топоров, стамесок, долот, продольных и дисковых пил; накатных роликов, плит и стержней для форм литья под давлением оловянно-свинцовистых сплавов; калибров простой формы и пониженных классов точности; холоднокатаной термообработанной ленты толщиной от 2,5 до 0,02 мм, предназначенной для изготовления плоских и витых пружин и пружинящих деталей сложной конфигурации (клапанов, щупов, берд, ламелей двоильных ножей, конструкционных мелких деталей, в том числе для часов, и т.д. (лента выпускается по ГОСТ 2283, ГОСТ 21996 и ряду специальных технических условий); биметаллического листового проката У8/75Н34Х8Г3, предназначенного для изготовления камертонных стабилизаторов и фильтров

Химический состав стали у8

Механические свойства стали у8

Общие данные о механических свйоствах стали

Отжиг или нормализация

Закалка 780 °С, масло. Отпуск 400 °С (образцы гладкие диаметром 6,3 мм)

Образец диаметром 5 мм и длиной 25 мм, деформированный и отожженный. Скорость деформирования 10 мм/мин. Скорость деформации 0,007 1/с.

Механические свойства ленты

Лента отожженная холоднокатаная

Лента нагартованная холоднокатаная.

Лента отожженная высшей категории качества

Технологические свойства стали у8

Температура ковки Свариваемость Обрабатываемость резанием Склонность к отпускной способности Флокеночувствительность Шлифуемость
Начала 1180, конца 800. Охлаждение заготовок сечением до 100 мм на воздухе, 101-300 мм — в яме.
не применяется для сварных конструкций. Способ сварки — КТС.
при НВ 187-227 Ku тв.спл. = 1.2, Ku б.ст. = 1.1.
не склонна
не чувствительна
хорошая

Источник: intehstroy-spb.ru

Закалка стали У8

Углеродистая инструментальная сталь У8 ГОСТ 1435 – популярный материал для изготовления рабочих деталей штампов для холодной листовой штамповки высокопластичных металлов, упоров, фиксаторов, отрезных ножей холодновысадочных автоматов. Кроме того, из данной стали производят некоторые виды металлорежущей оснастки, в частности, метчики и плашки. Ручной инструмент – напильники, зубила, крейцмейсели и т.п. – также могут изготавливаться из стали У8.

Закалка углеродистой стали У8

Закалка углеродистой стали У8

Характерные особенности и свойства

Имея в своём химическом составе 0,75…0,85% углерода, а также незначительное количество иных элементов – кремния, марганца, хрома, никеля и меди – сталь У8 является эктектоидной. При пониженном содержании марганца и кремния критическая скорость охлаждения всегда увеличивается. Поэтому практически сталь У8 используют лишь для изготовления металлообрабатывающего инструмента с небольшими габаритными размерами. Закалка стали такого типа допускает применение весьма жёстких охлаждающих сред (воды или водных растворов солей). Таким образом, данная сталь не относится к прокаливаемым: сердцевина остаётся вязкой, а твёрдость, полученная в результате предварительного отжига заготовок, практически такой же и остаётся.

Схема структурных превращений У8

Схема структурных превращений У8

Закалка в воду имеет и другие отрицательные последствия – при росте скорости охлаждения структура стали остаётся крупнозернистой. При дальнейшей обработке (например, ковке) эта особенность может вызвать растрескивание поковки, особенно при значительных степенях деформации. Часто при закалке в воду изделие теряет свои размеры и коробится, что вынуждает дополнительно производить калибровку инструмента.

Необходимо отметить, что эвтектика для стали У8 представляет собой уже при 723 ° С чистый аустенит без всяких признаков феррита. Все это влияет на оптимальный выбор режимов термической обработки.

Температура критических точек стали У8 составляет:

  1. Начало аустенитного превращения, от исходного перлита при нагреве – 720 °С.
  2. Окончание аустенитного превращения — 740 °С.
  3. Температуры начала и окончания превращения аустенита в перлит при охлаждении совпадают, и находятся в пределах 700 °С.
  4. Мартенситное превращение, начинаясь при 810 °С, заканчивается при 245 °С.

Скачать ГОСТ 1435-99 «Прутки, полосы и мотки из инструментальной нелегированной стали»

Твердость стали после термообработки

Твердость стали после термообработки

Общая характеристика прокаливаемости

Фактор прокаливаемости для нелегированных инструментальных сталей считается весьма важным. Большие скорости работы инструмента, начиная от пресс-автоматов, которые функционируют в непрерывном цикле, и заканчивая резьбонарезным инструментом, требуют сочетания высокой поверхностной твёрдости с достаточной вязкостью сердцевины. Иначе рабочие кромки инструментальной оснастки быстро выкрашиваются, а инструмент теряет свою точность.

Интенсивность прокаливаемости зависит от общего числа примесей, которые для стали У8 не должны превышать следующих граничных значений:

  • по фосфору 0,25%;
  • по сере – 0,03%;
  • по меди 0,02%.

Температура заготовки в зависимости от цвета при нагреве

Температура заготовки в зависимости от цвета при нагреве

Изготовление инструментальной оснастки из стали У8 (даже малоразмерной) затрудняется изначально небольшой пластичностью материала.

В исходном состоянии сталь марки У8 может поставляться в следующих видах сортамента по ГОСТ 5210:

  1. катаной широкой полосы. Ширина полосы составляет 12…48 мм, при толщине 3…10 мм;
  2. круглого прутка диаметром 4…18 мм;
  3. квадратного профиля с размером стороны от 4×4 до 18×18 мм;
  4. специальных профилей.
Читайте также:  Какие бывают породы охотничьих собак

Отжиг для металла из указанного ассортимента не производится. Для остальных видов поставки, а также при горячей ковке слитков необходим отжиг.

Технология производства отжига

Режим отжига стали У8 определяется следующими факторами:

  • способом укладки заготовок на под термической печи;
  • соотношением высоты и толщины заготовок;
  • температурой нагрева;
  • типом нагревательной печи.

График отжига

Экспериментально установлено, что наиболее эффективным режимом отжига является укладка заготовок в один слой на теплоизоляционных подставках из асбеста, при расстоянии между смежными заготовками не менее 3D (под D следует понимать максимальный габаритный размер сечения в плане). Тогда для нагрева до нужной температуры (1000…1200 ° С) потребуется:

  • для сечения до 20 мм – 5…6 мин;
  • для сечения до 30 мм – 8…10 мин;
  • для сечения до 40 мм – 9…12 мин;
  • для сечения до 50 мм – 12…15 мин;
  • для сечения до 75 мм – 15…18 мин;
  • для сечения до 100 мм – 19…25 мин;

Поскольку с увеличением продолжительности нагрева возникает опасность поверхностного науглероживания, то отжиг обычно ведут в печах с контролируемой атмосферой, либо в среде инертных газов (двуокиси углерода или даже аргона).

При иных способах укладки скорость нагрева уменьшается на 15…20%.

Лучшее качество отжига получается, если его проводить поэтапно. Вначале выполняется предварительный нагрев, для чего заготовки помещают в печь, которая уже имеет температуру в рабочей зоне до 500…550 °С, а потом постепенно нагревают изделия до требуемой температуры, не допуская скорости нагрева большей, чем 100 ° С в час. По достижении требуемого температурного диапазона, отжигаемую продукцию выдерживают в печи не менее 30% от общей продолжительности операции, а потом отключают печь.

Для снятия наклёпа холоднодеформированных изделий из стали У8 их подвергают рекристаллизационному отжигу с охлаждением в расплавах солей (для мелкого инструмента), и в водном растворе поваренной соли – для более крупного. В результате улучшается механическая обрабатываемость, снижаются остаточные деформации (особенно для длинных и тонких прутков и полос), а также оптимизируется структура стали. Температура такого вида отжига составляет 670…700 ° С пр выдержке в печи не более часа. При отжиге происходит полная перекристаллизация металла структура получается мелкозернистой, при равномерном распределении зёрен перлита. После отжига твёрдость стали У8 должна быть не более 190 НВ.

Закалка

Если технология закалки соблюдена, то конечная твёрдость изделий после термообработки должна находиться в пределах 59…62 HRC. Для выполнения такого условия, и сохранения необходимой структуры (мартенсит+аустенит) необходимо придерживаться следующих рекомендаций:

  1. Закалочные процессы протекают в полном объёме, если они начинаются при 800…820 °С.
  2. Соотношение времени предварительного и окончательного подогрева инструмента под закалку должно быть одинаковым, и находиться в температурном диапазоне значений 400…500 °С.
  3. Точное время нагрева обычно рассчитывается в зависимости от площади поверхности инструмента и его объёма. Особенно это важно при нагреве заготовок в расплавах солей: для расплавов это должно быть 8…14 мин, для водных растворов – 15…30 мин (увеличенные нормативы применяются для инструмента с резко отличающимися продольными и поперечными размерами).
  4. Охлаждение инструмента после закалки проводят в воде, температура которой (независимо от времени года и температуры в термическом отделении) должна находиться в пределах 18…25 °С. При более низких температурах возрастает риск растрескивания изделий, а при более высоких твёрдость инструмента получается неравномерной. Тот же дефект возможен в том случае, когда закалочная среда загрязнена минеральными и органическими остатками.
  5. Закалка стали У8 на воздухе невозможна.

После закалки производится отпуск изделий. При этом мартенситное превращение происходит в полной мере, внутренне напряжения снижаются, а вязкость сердцевины возрастает. Температура отпуска стали У8 после закалки составляет 140…200 °С: именно после таких температур конечная продукция сохранит достаточную твёрдость, и будет обладать достаточно вязкой сердцевиной. Время выдержки принимают в пределах 120…200 с, для измерительного инструмента температура может быть дополнительно снижена на 20…50 °С.

Иногда после заточки и шлифования инструмента из стали У8 (в основном, мерительного) проводят дополнительный отпуск. При этом температура составляет 300…350 °С, а время выдержки — 1,5…2 часа, с последующим охлаждением детали на воздухе.

Источник: sterbrust.tech

Углеродистые стали 45 и У8 после закалки и отпуска имеют структуру мартенсит отпуска и твердость: первая – 50 HRC , вторая – 60 HRC . Используя диаграмму состояния железо – карбид железа и учитывая превращения, происходящие в этих сталях в процессе закалки и отпуска, объясните, почему сталь У8 имеет большую твердость, чем сталь 45.

Закалка – термическая обработка – заключается в нагреве стали до температуры выше критической (А3 для доэвтектоидной и А 1 – для заэвтектоидной сталей) или температуры растворения избыточных фаз, в выдержке и последующем охлаждении со скоростью, превышающей критическую.

В результате закалки из аустенита образуется неустойчивая, метастабильная структура мартенсит. Для стали 45 температура АС3 = 770 °С , поэтому температуру закалки выбираем 810-840°С.

Для стали У8 критическая точка АС1 = 720°С, поэтому температура закалки равна 770-790°С.

Внимание! Данный контент закрыт для просмотра. Доступ к этому материалу можно получить на сайте cw.materialscience.ru.

Источник: www.materialscience.ru

Рейтинг
( Пока оценок нет )
Загрузка ...