Корпус предназначен для размещения ядерного заряда и системы автоматики, придания боеприпасу необходимой баллистической формы, предохраняет их от механического, а в некоторых случаях и от теплового воздействия, а также служит для повышения коэффициента использования ядерного горючего.
Система автоматики обеспечивает взрыв ядерного заряда в заданный момент времени и исключает его случайное или преждевременное срабатывание. Она включает:
Ø Блок автоматики — срабатывает по сигналам, поступающим от датчиков подрыва, и предназначен для формирования высоковольтного электрического импульса на приведение в действие ядерного заряда;
Ø Систему датчиков подрыва — Датчики подрыва (взрывательные устройства) предназначены для подачи сигнала на приведение в действие ядерного заряда. Они могут быть контактного и дистанционного типов. Контактные датчики срабатывают в момент встречи боеприпаса с преградой, а дистанционные — на заданной высоте (глубине) от поверхности земли (воды);
КАК УСТРОЕНА НЕЙТРОННАЯ БОМБА
Ø Систему предохранения — исключает возможность случайного взрыва ядерного заряда при проведении регламентных работ, хранении боеприпаса и при полете его на траектории;
Ø Систему аварийного подрыва — служит для самоуничтожения боеприпаса без ядерного взрыва в случае его отклонения от заданной траектории;
Ø Источник питания — источниками питания всей электрической системы боеприпаса являются аккумуляторные батареи различных типов, которые обладают одноразовым действием и приводятся в рабочее состояние непосредственно перед его боевым применением.
Строение атомной бомбы
Атомная бомба — сильно надкритичный реактор на быстрых нейтронах. К ядерным боеприпасам относятся снаряженные ядерными зарядами боевые (головные) части ракет различных типов и назначения, бомбы, торпеды, глубинные бомбы, артиллерийские снаряды и ядерные мины. Мощность ядерных боеприпасов принято характеризовать тротиловым эквивалентом, т. е. таким количеством тротила в тоннах, при взрыве которого выделяется такое же количество энергии, что и при взрыве данного ядерного заряда. Ядерные боеприпасы по мощности условно делятся на сверхмалые (до 1 кт), малые (1 — 10 кт), средние (10 — 100 кт), крупные (100 кт — 1 Мт) и сверхкрупные (свыше 1 Мт).
Атомная бомба построена на принципе освобождения колоссальной энергии при разделении тяжелых ядер урана или искусственного плутония. Чтобы сделать атомную бомбу, необходимы либо радиоактивный изотоп урана-235 с обогащением 90%, либо радиоактивный изотоп плутония-239 с обогащением 94%.
Существуют две основные схемы подрыва делящегося заряда: пушечная, иначе называемая баллистической, и имплозивная.
Пушечная схема характерна для некоторых моделей ядерного оружия первого поколения, а также артиллерийских ядерных боеприпасов, имеющих ограничения по калибру орудия. Суть пушечной схемы заключается в выстреливании зарядом пороха одного блока делящегося вещества докритической массы («пуля») в другой — неподвижный («мишень»). Блоки рассчитаны так, что при соединении их общая масса становится сверхкритической. Данный способ детонации возможен только в урановых боеприпасах. Классическим примером такой схемы является бомба «Малыш» («Little Boy»), сброшенная на Хиросиму 6 августа 1945 г.
КАК УСТРОЕНА АТОМНАЯ БОМБА «ТОЛСТЯК»
Имплозивная схема подразумевает получение сверхкритического состояния путём обжатия делящегося материала сфокусированной ударной волной, создаваемой взрывом обычной химической взрывчатки. Для фокусировки ударной волны используются так называемые взрывные линзы, и подрыв производится одновременно во многих точках с прецизионной точностью.
Следует отметить, что схема сферической имплозии является архаичной и с середины 1950-х годов почти не применяется. Реально применяемый дизайн Swan (англ. swan — лебедь), основан на использовании эллипсоидальной делящейся сборки, которая в процессе двухточечной, то есть инициированной в двух точках имплозии сжимается в продольном направлении и превращается в надкритическую сферу. Как таковые, взрывные линзы при этом не используются. Детали этого дизайна до сих пор засекречены, но, предположительно, формирование сходящейся ударной волны осуществляется за счет эллипсоидальной формы имплозирующего заряда, так что между ним и находящейся внутри ядерной сборкой остается заполненное воздухом пространство.
Схема строения атомной бомбы будет рассмотрено на примере бомбы «Толстяк», сброшенной США на японский город Нагасаки 9 августа 1945 года. Ядро бомбы «Толстяк» представляет собой набор вложенных друг в друга сфер: 1 — взрывчатая оболочка — 65 см, 2 – «толкатель»/поглотитель нейтронов — 23 см, 3 — урановый корпус/отражатель нейтронов — 11.5 см, 4 — плутониевое ядро — 4.5 см, 5 — бериллиево-полониевый нейтронный инициатор — 1 см.
1. Нейтронный инициатор — шар диаметром порядка 2 см из бериллия, покрытый тонким слоем сплава иттрий-полоний или металлического полония-210 — первичный источник нейтронов для резкого снижения критической массы и ускорения начала реакции. Срабатывает в момент перевода боевого ядра в закритическое состояние (при сжатии происходит смешение полония и бериллия с выбросом большого количества нейтронов). В настоящее время помимо данного типа инициирования, больше распространено термоядерное инициирование (ТИ). Термоядерный инициатор (ТИ). Находится в центре заряда (подобно НИ) где размещается небольшое количество термоядерного материала, центр которого нагревается сходящейся ударной волной и в процессе термоядерной реакции на фоне возникших температур нарабатывается значимое количество нейтронов, достаточное для нейтронного инициирования цепной реакции.
2. Плутоний. Используют максимально чистый изотоп плутоний-239, хотя для увеличения стабильности физических свойств (плотности) и улучшения сжимаемости заряда плутоний легируется небольшим количеством галлия.
3. Оболочка (обычно из урана), служащая отражателем нейтронов.
4. Обжимающая оболочка из алюминия. Обеспечивает большую равномерность обжима ударной волной, в то же время предохраняя внутренние части заряда от непосредственного контакта со взрывчаткой и раскалёнными продуктами её разложения.
5. Взрывчатое вещество со сложной системой подрыва, обеспечивающей синхронность подрыва всего взрывчатого вещества. Синхронность необходима для создания строго сферической сжимающей (направленной внутрь шара) ударной волны. Несферическая волна приводит к выбросу материала шара через неоднородность и невозможность создания критической массы. Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее трудных задач. Используется комбинированная схема (система линз) из «быстрой» и «медленной» взрывчаток.
6. Корпус, изготовленный из дюралевых штампованных элементов — две сферических крышки и пояс, соединяемые болтами.
Прямо сейчас студенты читают про:
Основные экономические группировки стран современного мира Региональные экономические группировки: — ЕС – Европейское сообщество — НАФТА – Североамериканское соглашение о свободной.
ШИФРОВАНИЕ ЦИФРАМИ При шифровании методом подстановки, буквы исходного текста могут заменяться на геометрические фигуры, фигурки людей, животных, любые.
ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ КРАНА МАШИНИСТА № 394 (395) Возможные неисправности тормозного оборудования, способы их устранения В тексте приняты условные сокращения.
Оборотные средства. Оборотные средства — это средства, используемые предприятием для осуществления своей постоянной деятельности Оборотные средства — это средства, используемые предприятием для осуществления своей постоянной деятельности, оборотные средства.
Принципы юридической ответственности. Для более полного уяснения сущности юридической ответственности важно определить принципы, на которых она базируется.
Источник: studopedia.ru
Ярче Солнца: Атомная бомба
Загадочное устройство, способное выделить гигаджоули энергии в течение неописуемо малого промежутка времени, окружено зловещей романтикой. Что и говорить, во всем мире работы по ядерному оружию были глубоко засекречены, а сама бомба обросла массой легенд и мифов. Попробуем разобраться с ними по порядку.
Андрей Суворов
Item 1 of 10
Ничто не вызывает такого интереса, как атомная бомба
0 РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Критическая масса
Все слышали, что есть некая критическая масса, которую нужно набрать, чтобы началась цепная ядерная реакция. Вот только для того, чтобы произошел настоящий ядерный взрыв, одной критической массы недостаточно — реакция прекратится практически мгновенно, до того как успеет выделиться заметная энергия. Для полномасштабного взрыва в несколько килотонн или десятков килотонн нужно одномоментно собрать две-три, а лучше четыре-пять критических масс.
Кажется очевидным, что нужно сделать две или несколько деталей из урана или плутония и в требуемый момент соединить их. Справедливости ради надо сказать, что так же думали и физики, когда брались за конструирование ядерной бомбы. Но действительность внесла свои коррективы.
0 РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Дело в том, что если бы у нас был очень чистый уран-235 или плутоний-239, то можно было бы так и сделать, но ученым пришлось иметь дело с реальными металлами. Обогащая природный уран, можно сделать смесь, содержающую 90% урана-235 и 10% урана-238, попытки избавиться от остатка урана-238 ведут к очень быстрому удорожанию этого материала (его называют высокообогащенным ураном). Плутоний-239, который получают в атомном реакторе из урана238 при делении урана-235, обязательно содержит примесь плутония-240.
Изотопы уран235 и плутоний239 называются четно-нечетными, так как ядра их атомов содержат четное число протонов (92 для урана и 94 для плутония) и нечетное число нейтронов (143 и 145 соответственно). Все четно-нечетные ядра тяжелых элементов обладают общим свойством: они редко делятся самопроизвольно (ученые говорят: «спонтанно»), но легко делятся при попадании в ядро нейтрона.
0 РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
0 РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Уран-238 и плутоний-240 — четно-четные. Они, наоборот, практически не делятся нейтронами малых и умеренных энергий, которые вылетают из делящихся ядер, но зато в сотни или десятки тысяч раз чаще делятся спонтанно, образуя нейтронный фон. Этот фон очень сильно затрудняет создание ядерных боеприпасов, потому что вызывает преждевременное начало реакции, до того как встретятся две детали заряда. Из-за этого в подготовленном к взрыву устройстве части критической массы должны быть расположены достаточно далеко друг от друга, а соединяться с большой скоростью.
Пушечная бомба
Тем не менее, бомба, сброшенная на Хиросиму 6 августа 1945 года, была сделана именно по вышеописанной схеме. Две ее детали, мишень и пуля, были изготовлены из высокообогащенного урана. Мишень была цилиндром диаметром 16 см и высотой тоже 16 см. В ее центре было отверстие диаметром 10 см. В соответствии с этим отверстием и была изготовлена пуля.
Всего бомба содержала 64 кг урана.
0 РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Мишень была окружена оболочкой, внутренний слой которой был изготовлен из карбида вольфрама, наружный — из стали. Назначение у оболочки было двойным: удержать пулю, когда она воткнется в мишень, и отразить хотя бы часть вылетающих из урана нейтронов обратно. С учетом отражателя нейтронов 64 кг составляли 2,3 критических массы.
Как же это выходило, ведь каждый из кусков был субкритическим? Дело в том, что, вынимая из цилиндра среднюю часть, мы уменьшаем его среднюю плотность и значение критической массы повышается. Таким образом, масса этой части может превышать критическую массу для сплошного куска металла. А вот увеличить массу пули таким образом невозможно, ведь она должна быть сплошной.
И мишень, и пуля были собраны из кусочков: мишень из нескольких колец малой высоты, а пуля из шести шайб. Причина проста — заготовки из урана должны были быть небольшими по размеру, ведь при изготовлении (отливке, прессовании) заготовки общее количество урана не должно приближаться к критической массе. Пуля была заключена в тонкостенную оболочку из нержавеющей стали, с крышкой из карбида вольфрама, как у оболочки мишени.
0 РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
0 РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Для того чтобы направить пулю в центр мишени, решили использовать ствол обычной зенитной пушки калибра 76,2 мм. Вот почему бомбу такого типа называют иногда бомбой пушечной сборки. Ствол был расточен изнутри до 100 мм, чтобы в него вошел столь необычный снаряд. Длина ствола составляла 180 см.
В его зарядную камеру загружался обычный бездымный порох, который выстреливал пулю со скоростью примерно в 300 м/с. А другой конец ствола запрессовали в отверстие в оболочке мишени.
У этой конструкции была масса недостатков.
Она была чудовищно опасной: после того как порох был загружен в зарядную камеру, любая авария, которая могла его воспламенить, привела бы к взрыву бомбы на полную мощность. Из-за этого зарядка пироксилина происходила уже в воздухе, когда самолет подлетал к цели.
0 РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
При аварии самолета урановые детали могли соединиться и без пороха, просто от сильного удара о землю. Чтобы избежать этого, диаметр пули был на долю миллиметра больше диаметра канала в стволе.
Если бы бомба упала в воду, то из-за замедления нейтронов в воде реакция могла бы начаться даже и без соединения частей. Правда, при этом ядерный взрыв маловероятен, но произошел бы тепловой взрыв, с распылением урана на большую территорию и радиоактивным заражением.
Длина бомбы такой конструкции превышала два метра, и это фактически непреодолимо. Ведь критическое состояние достигалось, и реакция начиналась, когда до остановки пули было еще добрых полметра!
Наконец, эта бомба была очень расточительной: прореагировать в ней успевало меньше 1% урана!
0 РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Достоинство же у пушечной бомбы было ровно одно: она не могла не сработать. Ее даже не собирались испытывать! А вот плутониевую бомбу американцы должны были испытать: уж слишком нова и сложна была ее конструкция.
Плутониевый футбольный мяч
Когда выяснилось, что даже крошечная (меньше 1%!) примесь плутония-240 делает невозможной пушечную сборку плутониевой бомбы, физики были вынуждены искать другие способы набрать критическую массу. И ключ к плутониевой взрывчатке нашел человек, который позже стал самым знаменитым «ядерным шпионом», — британский физик Клаус Фукс.
0 РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Его идея, получившая позже название «имплозия», заключалась в формировании сходящейся сферической ударной волны из расходящейся, с помощью так называемых взрывчатых линз. Эта ударная волна должна была сжать кусок плутония так, чтобы его плотность увеличилась вдвое.
0 РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Если уменьшение плотности вызывает увеличение критической массы, то увеличение плотности должно ее уменьшить! Для плутония это особенно актуально. Плутоний — материал очень специфический. При охлаждении куска плутония от температуры плавления до комнатной, он претерпевает четыре фазовых перехода. При последнем (около 122 градусов) его плотность скачком увеличивается на 10%.
При этом любая отливка неизбежно растрескивается. Чтобы этого избежать, плутоний легируют каким-нибудь трехвалентным металлом, тогда стабильным становится неплотное состояние. Можно использовать алюминий, но в 1945 году опасались, что альфа-частицы, вылетающие из ядер плутония при их распаде, будут выбивать из ядер алюминия свободные нейтроны, увеличивая и без того заметный нейтронный фон, поэтому в первой атомной бомбе был использован галлий.
0 РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Из сплава, содержащего 98% плутония-239, 0,9% плутония-240 и 0,8% галлия, был изготовлен шарик диаметром всего 9 см и весом около 6,5 кг. В центре шарика была полость диаметром 2 см, и он состоял из трех деталей: двух половинок и цилиндрика диаметром 2 см. Этот цилиндрик служил пробкой, через которую во внутреннюю полость можно было вставить инициатор — источник нейтронов, который срабатывал при взрыве бомбы. Все три детали пришлось никелировать, потому что плутоний очень активно окисляется воздухом и водой и крайне опасен при попадании внутрь организма человека.
Шарик был окружен отражателем нейтронов из природного урана238 толщиной 7 см и весом 120 кг. Уран — хороший отражатель быстрых нейтронов, и в собранном виде система была лишь немного субкритической, поэтому вместо плутониевой пробки вставлялась кадмиевая, поглощавшая нейтроны. Отражатель служил еще и для удержания всех деталей критической сборки во время реакции, иначе большая часть плутония разлеталась, не успевая принять участия в ядерной реакции.
0 РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
0 РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Дальше шел 11,5-сантиметровый слой алюминиевого сплава весом 120 кг. Назначение слоя такое же, как у просветления на линзах объективов: сделать так, чтобы взрывная волна проникла в ураново-плутониевую сборку, а не отразилась от нее. Это отражение происходит из-за большой разницы плотностей взрывчатки и урана (примерно 1:10).
Кроме того, в ударной волне вслед за волной сжатия идет волна разрежения, так называемый эффект Тейлора. Слой алюминия ослаблял волну разрежения, которая уменьшала действие взрывчатки. Алюминий пришлось легировать бором, который поглощал нейтроны, вылетающие из ядер атомов алюминия под воздействием альфа-частиц, возникающих при распаде урана-238.
Наконец, снаружи находились те самые «взрывчатые линзы». Их было 32 (20 шестигранных и 12 пятигранных), они образовывали структуру, похожую на футбольный мяч. Каждая линза состояла из трех частей, причем средняя была изготовлена из специальной «медленной» взрывчатки, а наружная и внутренняя — из «быстрой».
Внешняя часть была сферической снаружи, но внутри на ней была коническая впадина, как на кумулятивном заряде, вот только назначение ее было другое. Этот конус был заполнен медленной взрывчаткой, и на границе раздела происходило преломление взрывной волны подобно обычной световой волне. Но подобие здесь очень условное. В сущности, форма этого конуса и есть один из настоящих секретов ядерной бомбы.
0 РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
В середине 40-х годов в мире не существовало таких компьютеров, на которых можно было бы рассчитать форму таких линз, а главное — не было даже подходящей теории. Поэтому они делались исключительно методом проб и ошибок. Пришлось провести более тысячи взрывов — и не просто провести, а сфотографировать специальными высокоскоростными камерами, регистрируя параметры взрывной волны. Когда была отработана уменьшенная версия, выяснилось, что взрывчатка так просто не масштабируется, и потребовалось сильно корректировать старые результаты.
Точность формы нужно было соблюсти с ошибкой меньше миллиметра, а состав и однородность взрывчатки выдерживать предельно аккуратно. Изготавливать детали можно было только литьем, поэтому годились не все взрывчатые вещества. Быстрая взрывчатка была смесью гексогена и тротила, причем гексогена было в два раза больше. Медленная — тот же тротил, но с добавкой инертного нитрата бария. Скорость детонационной волны в первой взрывчатке составляет 7,9 км/с, а во второй — 4,9 км/с.
Источник: www.techinsider.ru
Ядерная бомба
Я́дерное ору́жие (или а́томное ору́жие) — взрывное устройство, в котором источником энергии является синтез или деление атомных ядер — ядерная реакция. В узком смысле — взрывное устройство, использующее энергию деления тяжёлых ядер. Устройства, использующие энергию, выделяющуюся при синтезе лёгких ядер, называются термоядерными. Ядерное оружие включает как ядерные боеприпасы, так и средства их доставки к цели и средства управления; относится к оружию массового поражения (ОМП) наряду с биологическим и химическим оружием.
Поражающие факторы
США — Россия — Великобритания — Франция — КНР — Индия — Израиль — Пакистан — Северная Корея
Основная статья: Поражающие факторы ядерного взрыва
При подрыве ядерного боеприпаса происходит ядерный взрыв, поражающими факторами которого являются:
- световое излучение
- ионизирующее излучение
- ударная волна
- радиоактивное заражение
- электромагнитный импульс
- психологическое воздействие
В зависимости от типа ядерного заряда можно выделить:
- собственно ядерное оружие, в боеприпасе которого в момент взрыва происходит ядерная реакция деления тяжёлых элементов с образованием более лёгких; иногда выделяют так называемые «чистые» ядерные заряды, сконструированные таким образом, чтобы снизить до минимума радиоактивное заражение местности;
- термоядерное оружие, основное энерговыделение которого происходит при термоядерной реакции — синтезе тяжёлых элементов из более лёгких, а в качестве запала для термоядерной реакции используется ядерный заряд;
- нейтронное оружие — ядерный заряд малой мощности, дополненный механизмом, обеспечивающим выделение большей части энергии взрыва в виде потока быстрых нейтронов; его основным поражающим фактором является нейтронное излучение и наведённая радиоактивность.
По назначению ядерное оружие делится на:
- тактическое, предназначенное для поражения живой силы и боевой техники противника на фронте и в ближайших тылах;
- оперативно-тактическое — для уничтожения объектов противника в пределах оперативной глубины;
- стратегическое — для уничтожения административных, промышленных центров и иных стратегических целей в глубоком тылу противника.
Мощность ядерного заряда измеряется в тротиловом эквиваленте — количестве тринитротолуола, которое нужно подорвать для получения взрыва той же энергии. Обычно его выражают в килотоннах (кт) и мегатоннах (Мт). Тротиловый эквивалент условен, поскольку распределение энергии ядерного взрыва по различным поражающим факторам существенно зависит от типа боеприпаса и, в любом случае, сильно отличается от химического взрыва.
Принято делить ядерные боеприпасы по мощности на пять групп:
- сверхмалые (менее 1 кт);
- малые (1 — 10кт);
- средние (10 — 100 кт);
- крупные (большой мощности) (100 кт — 1 Мт);
- сверхкрупные (сверхбольшой мощности) (свыше 1 Мт).
«Манхэттенский проект»
Первое ядерное оружие было разработано в конце Второй мировой войны, в 1944 году, в рамках американского сверхсекретного «Манхэттенского проекта» под руководством Роберта Оппенгеймера. Первая бомба взорвана в США, в порядке испытаний, 16 июля 1945 года. Вторая и третья были сброшены американцами в августе того же года на японские города Хиросима (6 августа) и Нагасаки (9 августа) — это первый и единственный в истории человечества случай боевого применения ядерного оружия.
Принцип действия
В основу ядерного оружия положена неуправляемая цепная реакция деления ядра. Существуют две основные схемы: «пушечная», иначе называемая баллистической и имплозионная. «Пушечная» схема характерна для самых примитивных моделей ядерного оружия I-го поколения, а также артиллерийских и стрелковых ядерных боеприпасов, имеющих ограничения по калибру оружия. Суть её заключается в «выстреливании» навстречу друг другу двух блоков делящегося вещества докритической массы. Данный способ детонации возможен только в урановых боеприпасах, так как плутоний имеет более высокий нейтронный фон, что приводит к увеличению требующейся скорости соединения частей заряда, превышающий технически достижимые. Вторая схема подразумевает получение сверхкритического состояния путём обжатия делящегося материала сфокусированной ударной волной, создаваемой взрывом обычной химической взрывчатки, которой для фокусировки придаётся весьма сложная форма и подрыв производится одновременно в нескольких точках с прецизионной точностью.
Мощность ядерного заряда, работающего исключительно на принципах деления тяжёлых элементов, ограничивается сотнями килотонн. Создать более мощный заряд, основанный только на делении ядер, если и возможно, то крайне затруднительно: увеличение массы делящегося вещества не решает проблему, так как начавшийся взрыв распыляет часть топлива, оно не успевает прореагировать полностью и, таким образом, оказывается бесполезным, лишь увеличивая массу боеприпаса и радиоактивное поражение местности. Самый мощный в мире боеприпас, основанный только на делении ядер, был испытан в США 15 ноября 1952 года, мощность взрыва составила 500 кт [1] .
Урановая бомба
Для того, чтобы реакция могла поддерживать сама себя, необходимо соответствующее «топливо», в качестве которого на первых этапах использовался изотоп урана.
Уран в природе встречается в виде двух изотопов — уран-235 и уран-238. При поглощении ураном-235 нейтрона в процессе распада выделяется от одного до трёх нейтронов:
Уран-238, напротив, при поглощении нейтронов умеренных энергий не выделяет новые, препятствуя ядерной реакции. Он превращается в уран-239, затем в нептуний-239, и наконец, в относительно стабильный плутоний-239.
Бомба на основе урана стала первым ядерным оружием, использованным человеком в боевых условиях (бомба «Малыш», сброшенная на Хиросиму). Из-за ряда недостатков (трудности получения, разработки и доставки) на данный момент не распространены, уступая более совершенным бомбам на основе других радиоактивных элементов с более низкой критической массой.
Плутониевая бомба
Первым ядерным зарядом, взорванным в испытательных целях, было ядерное устройство «Gadget», «Штуковина» (англ. gadget — приспособление, безделушка) — прототип плутониевой бомбы «Толстяк», сброшенной на Нагасаки. Испытания проводились на полигоне неподалеку от г. Аламогордо в штате Нью-Мексико.
Конструктивно эта бомба представляла собой несколько сфер, вложенных друг в друга:
- Импульсный нейтронный инициатор (ИНИ, «ёжик», «урчин» (англ.urchin )) — шар диаметром порядка 2 см из бериллия, покрытый тонким слоем сплава иттрий-полоний или металлического полония-210 — первичный источник нейтронов для резкого снижения критической массы и ускорения начала реакции. Срабатывает в момент перевода боевого ядра в закритическое состояние (при сжатии происходит смешение полония и бериллия с выбросом большого количества нейтронов). В настоящее время короткоживущий полоний-210 заменён долгоживущим плутонием-238, также способным при смешении с бериллием к мощному нейтронному импульсу.
- Плутоний. Желателен максимально чистый изотоп плутоний-239, хотя для увеличения стабильности физических свойств (плотности) и улучшения сжимаемости заряда плутоний легируется небольшим количеством галлия.
- Оболочка (англ.tamper ), служащая отражателем нейтронов (из урана).
- Обжимающая оболочка (англ.pusher ) из алюминия. Обеспечивает бо́льшую равномерность обжима ударной волной, в то же время предохраняя внутренние части заряда от непосредственного контакта со взрывчаткой и раскалёнными продуктами её разложения.
- Взрывчатое вещество со сложной системой подрыва, обеспечивающей синхронность подрыва всего взрывчатого вещества. Синхронность необходима для создания строго сферической сжимающей (направленной внутрь шара) ударной волны. Несферическая волна приводит к выбросу материала шара через неоднородность и невозможность создания критической массы. Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее трудных задач. Используется комбинированная схема (система линз) из «быстрой» и «медленной» взрывчаток — боратола и ТАТВ.
- Корпус, изготовленный из дюралевых штампованных элементов — две сферических крышки и пояс, соединяемых болтами.
Ядерный клуб
Боевой железнодорожный ракетный комплекс БЖРК 15П961 «Молодец» c межконтинентальной ядерной ракетой
В 1963 году, когда только четыре государства имели ядерные арсеналы, правительство Соединенных Штатов делало прогноз, что в течение предстоящего десятилетия появится от 15 до 25 государств, обладающих ядерным оружием; другие же государства предсказывали, что это число может даже возрасти до 50. По состоянию на 2004 год известно, что только у восьми государств есть ядерные арсеналы. Сильный режим нераспространения — его олицетворяют МАГАТЭ и Договор — помог резко замедлить предполагавшиеся темпы распространения.
Из доклада ООН, 2005 год [1]
Израиль не комментирует информацию о наличии у него ядерного оружия, однако, по мнению некоторых экспертов, обладает арсеналом порядка 200 зарядов (по оценкам бывшего президента США Джимми Картера — 150 [2] ).
Небольшой ядерный арсенал был у ЮАР, но все шесть ядерных зарядов были добровольно уничтожены. Полагают, что ЮАР проводила ядерные испытания в районе острова Буве. ЮАР — единственная страна, которая самостоятельно разработала ядерное оружие и при этом добровольно от него отказалась.
В 1990—1991 гг. Украина, Белоруссия и Казахстан, на территории которых находилась часть ядерного вооружения СССР, передали его Российской Федерации, а после подписания в 1992 году Лиссабонского протокола были объявлены странами, не имеющими ядерного оружия. При этом Белоруссия и Казахстан передали ядерное оружие безвозмездно, а Украина передала его при условии признания Россией границ Украины (пока обе они в СНГ) на момент распада СССР (т.е. с полуостровом Крым).
Близко подошедшим к созданию ядерной бомбы считается Иран.
В разные годы в наличии военных ядерных программ также подозревались Бразилия, Ливия, Ирак и Республика Корея.
США осуществили первый в истории ядерный взрыв мощностью 20 килотонн 16 июля 1945 года в пустыне Аламогордо (штат Нью-Мексико). 6 и 9 августа 1945 ядерные бомбы были сброшены, соответственно, на японские города Хиросима и Нагасаки.
СССР испытал своё первое ядерное устройство мощностью 22 килотонн 29 августа 1949 года на Семипалатинском полигоне.
Великобритания произвела первый надводный ядерный взрыв мощностью 25 килотонн 3 октября 1952 года в районе островов Монте-Белло (северо-западнее Австралии).
Франция провела наземные испытания ядерного заряда мощностью 20 килотонн 13 февраля 1960 года в оазисе Регган (Алжир).
КНР взорвала ядерную бомбу мощностью 20 килотонн 16 октября 1964 года на озере Лобнор.
Индия произвела подземное испытание ядерного заряда мощностью 20 килотонн 18 мая 1974 года на полигоне Покхаран, но официально не признала себя обладателем ядерного оружия. Это было сделано лишь после подземных испытаний пяти ядерных взрывных устройств, включая 30-килотонную термоядерную бомбу, которые прошли на полигоне Покхаран 11-14 мая 1998 года.
Пакистан провёл подземные испытания шести ядерных зарядов мощностью 18 килотонн каждый 28 мая 1998 года в провинции Белуджистан в качестве симметричного ответа на индийские ядерные испытания 1974 и 1998 годов.
КНДР провела первое подземное испытание ядерной бомбы предположительной мощностью 1 килотонна 9 октября 2006 года и второе мощностью 10 — 20 килотонн 25 мая 2009 года.
Запасы ядерного оружия в мире
Количество боеголовок по данным «Бюллетеня ядерных испытаний»
США | 32 | 1005 | 6444 | 30893 | 10600 | ||||||
СССР/Россия | 50 | 660 | 8339 | 13000 | 8600 | ||||||
Великобритания | 20 | 270 | 200 | ||||||||
Франция | 36 | 350 | |||||||||
Китай | 25 | 400 | |||||||||
Индия + Пакистан | |||||||||||
Израиль | ≈200 | ||||||||||
Итого | 32 | 1055 | 7124 | >30000 | 39563 | >40000 | ≈49000 | ≈57000 | 63484 |
См. также
- Стратегические ядерные силы Российской Федерации
- Ядерная зима
- Ядерный клуб
- Ядерная мина
- Ядерный чемоданчик
- Царь-бомба
- Граунд Зеро
- Договор о нераспространении ядерного оружия
- Договор о всеобъемлющем запрещении ядерных испытаний
- МАГАТЭ
- Грязная бомба
- Термоядерное оружие
- Группа ядерных поставщиков
Примечания
- ↑В. Б. Адамский, Ю. Н. Смирнов, Ю. А. Трутнев. Сверхмощные ядерные взрывы в США и СССР как проявление научно-технической и государственной политики в годы холодной войны. Доклад на международной конференции в Вене в октябре 1999 г.
- ↑Джимми Картер посчитал ядерные боеголовки Израиля (26.05.2008)
Ссылки
- На Викискладе есть медиафайлы по теме Ядерное оружие
- Памятка населению по защите от атомного оружия. Второе издание. Москва 1954. (формат djvu)
- Энциклопедия ядерного оружия
- Подробное техническое описание первых зарядов (англ.)
- Проект «Хиросима» (историческая справка, видеоматериалы, документы)
- Когда Россия будет иметь атомную бомбу? — исследование американских ученых; брошюра 1948 года
- С.Лозунько. Атомное оружие. У кого сколько?, 2007.
- Создатель советской атомной бомбы Ю.Б.Харитон
- База данных по всем, проведеным различными странами, ядерным взрывам (австралийский правительственный сайт). (англ.)
- Подготовка и испытание самой мощной термоядерной бомбы мощностью 50 мегатонн.
Инерциальный синтез · Корпусной ядерный реактор · Кипящий ядерный реактор · 4-го поколения · Реактор на быстрых нейтронах · Магноксовый · Графито-газовый ядерный реактор · Газоохлаждаемый быстрый · Реактор с жидкометаллическим теплоносителем · Со свинцовым теплоносителем · Реактор на расплавах солей · Сверхкритический водоохлаждаемый · Сверхвысокотемпературный · С гранулированным топливом · Интегральный быстрый реактор · SSTAR
Позитронно-эмиссионная томография · Однофотонная эмиссионная компьютерная томография (ОФЭКТ) · Гамма-камера
Источник: dic.academic.ru
Атомные бомбы
Атомная бомба — снаряд для получения взрыва большой силы в результате весьма быстрого выделения ядерной (атомной) энергии.
Принцип действия атомных бомб
Ядерный заряд разделён на несколько частей до критических размеров, чтобы в каждой из них не могла начаться саморазвивающаяся неуправляемая цепная реакция делений атомов делящегося вещества. Такая реакция возникнет лишь тогда, когда все части заряда будут быстро соединены в одно целое.
От скорости сближения отдельных частей в сильной степени зависит полнота протекания реакции и в конечном счёте мощность взрыва. Для сообщения большой скорости частям заряда можно использовать взрыв обычного взрывчатого вещества.
Если части ядерного заряда расположить по радиальным направлениям на некотором расстоянии от центра, а с внешней стороны поместить заряды тротила, то можно осуществить взрыв обычных зарядов, направленный к центру ядерного заряда. Все части ядерного заряда не только с огромной скоростью соединяться в единое целое, но и окажутся на некоторое время сжатыми со всех сторон огромным давлением продуктов взрыва и не смогут разделиться сразу, как только начнётся в заряде цепная ядерная реакция.
В результате этого произойдёт значительно большее деление, чем без такого сжатия, и , следовательно, повысится мощность взрыва. Увеличению мощности взрыва при том же количестве делящегося вещества способствует также отражатель нейтронов (наиболее эффективными отражателями являются бериллий < Be >, графит, тяжёлая вода < H3O >).
Для первого деления, которое положило бы начало цепной реакции, нужен, по меньшей мере, один нейтрон. Рассчитывать на своевременное начало цепной реакции под действием нейтронов, появляющихся при самопроизвольном ( спонтанном ) делении ядер, нельзя, т.к. оно происходит сравнительно редко: для U-235 — 1 распад в час на 1 гр. вещества. Нейтронов, существующих в свободном виде в атмосфере, также очень мало: через S = 1см/кв. за секунду пролетает в среднем около 6 нейтронов. По этой причине в ядерном заряде применяют искусственный источник нейтронов — своеобразный ядерный капсюль-детонатор. Он обеспечивает также множество начинающихся одновременно делений, поэтому реакция протекает в виде ядерного взрыва.
Варианты детонации (Пушечная и имплозивная схемы)
Существуют две основные схемы подрыва делящегося заряда: пушечная, иначе называемая баллистической, и имплозивная.
«Пушечная схема» использовалась в некоторых моделях ядерного оружия первого поколения. Суть пушечной схемы заключается в выстреливании зарядом пороха одного блока делящегося материала докритической массы («пуля») в другой — неподвижный («мишень»). Блоки рассчитаны так, что при соединении их общая масса становится надкритической.
Данный способ детонации возможен только в урановых боеприпасах, так как плутоний имеет на два порядка более высокий нейтронный фон, что резко повышает вероятность преждевременного развития цепной реакции до соединения блоков. Это приводит к неполному выходу энергии (т. н. «шипучка», англ. Для реализации пушечной схемы в плутониевых боеприпасах требуется увеличение скорости соединения частей заряда до технически недостижимого уровня. Кроме того, уран лучше, чем плутоний, выдерживает механические перегрузки.
Имплозивная схема. Эта схема детонации подразумевает получение сверхкритического состояния путём обжатия делящегося материала сфокусированной ударной волной, создаваемой взрывом химической взрывчатки. Для фокусировки ударной волны используются так называемые взрывные линзы, и подрыв производится одновременно во многих точках с прецизионной точностью. Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее трудных задач. Формирование сходящейся ударной волны обеспечивалось использованием взрывных линз из «быстрой» и «медленной» взрывчаток — ТАТВ (Триаминотринитробензол) и баратола (смесь тринитротолуола с нитратом бария), и некоторыми добавками)
Источник: studbooks.net
Интереcно о науке
Первая ядерная бомба, предназначенная для уничтожения людей была взорвана над Хиросимой в Японии, 6 августа 1945 года. Через 3 дня другая бомба взорвалась вблизи Нагасаки. Смерть и разрушения сопровождаемые этими взрывами были беспрецедентными. Страх и ужас охватил все Японское население, вынудив сдаться их меньше чем через месяц.
Однако после завершения второй мировой войны атомное оружие не отошло на второй план. Начавшаяся холодная война стала огромным психологическим фактором давления между СССР и США. Обе стороны инвестировали огромные средства в разработку и создание новых атомных бомб. Таким образом, на нашей планете за 50 лет накопилось несколько тысяч атомных снарядов.
Этого вполне достаточно, чтобы несколько раз уничтожить все живое на Земле. По этой причине в конце 90-х годов между США и Россией был подписан первый договор по разоружению, чтобы снизить опасность всемирной катастрофы. Не смотря на это, в настоящее время 9 стран обладают ядерным оружием, ставя свою оборону на иной уровень. В этой статье мы рассмотрим, из-за чего атомное оружие получило свою разрушительную мощь и как устроена атомная бомба.
Для того, чтобы понять всю мощь атомных бомб необходимо разобраться с понятием радиоактивности. Как известно, наименьшей структурной единицей материи, из которой состоит весь мир вокруг нас, является атом. Атом в свою очередь состоит из ядра и вращающихся вокруг него электронов. Ядро состоит из нейтронов и протонов. Электроны имеют отрицательный заряд, а протоны положительный.
Нейтроны, как следует из их названия, – нейтральны. Обычно число нейтронов и протонов равно числу электронов в одном атоме. Однако под действием внешних сил число частиц в атомах вещества может измениться.
Нас интересует лишь вариант, когда изменяется число нейтронов, при этом образуется изотоп вещества. Некоторые изотопы вещества устойчивы и встречаются в природе, а некоторые – нестабильны и стремятся распасться. Например, углерод имеет 6 нейтронов. Также, встречается изотоп углерода с 7 нейтронами – достаточно устойчивый элемент, встречающий в природе.
Изотоп углерода с 8 нейтронами – это уже нестабильный элемент и стремиться распасться. Это и есть радиоактивный распад. При этом нестабильные ядра, излучают лучи трех видов:
1. Альфа-лучи – достаточно безобидное излучение в виде потока альфа-частиц, которое можно остановить с помощью тонкого листа бумаги и оно не может причинить вред
2. Бета-лучи – более мощное излучение, представляющее собой поток бета-частиц. Их можно остановить с помощью листа металла или толстого куска дерева. Оно также практически безобидно для окружающих живых организмов и предметов.
3. Гамма-лучи – поток электромагнитной энергии, способный проникать сквозь стены домов, корпуса автомобилей, тела живых организмов. Это излучение не так безобидно как два предыдущих. Оно способно ионизировать атомы других веществ, выбивая из них электроны. В живом организме это приводит к разрушению клеток и развитию лучевой болезни.
Еще одним важным свойством изотопов является их более легкое расщепление при бомбардировке нейтронами. Кроме указанных выше лучей также выделяется большое количество энергии, а также несколько новых нейтронов. Если рядом находятся другие атомы изотопов, то они также будут бомбардированы нейтронами и распадутся. При этом каждый из них также выпустит некоторое количество нейтронов и энергии. Именно это свойство и используется в атомной бомбе.
Взрыв ядерной бомбы представляет собой лавинообразную реакцию расщепления атомов радиоактивного вещества, сопровождаемый выбросом огромного количества энергии. Однако на практике не все так просто. Цепная реакция может начаться, только если общий вес радиоактивного вещества превышает критическую массу.
Пока вес вещества ниже этого порога, выделяемых нейтронов будет недостаточно для возникновения цепной реакции. Для каждого вещества и изотопа критическая масса – это величина разная и может варьироваться от сотен грамм до десятков килограмм. Для одного из самых известных видов изотопов, используемых в атомных бомбах – уран 235 критическая масса около1 кг. Необходимость достижения критической массы для начала ядерной реакции используется в устройстве атомной бомбы.
В наиболее простом виде атомная бомба состоит из корпуса, взрывного заряда (например, тротил) и радиоактивного вещества. Причем последнее разделяется на две части и изолируются так, чтобы вес каждой из частей не превышал критическую массу, но в сумме они ее достигали. За одной из частей размещается заряд.
Бомба работает следующим образом. В нужный момент, когда сработает детонатор или поступит сигнал извне, заряд с взрывчатым веществом подрывается, и запускает в движение одну из частей по направлению к другой. Соединяясь, части уже превышают критическую массу и образовавшиеся нейтроны вовлекают все больше и больше ядерного материала.
В результате образуется ядерный взрыв, сила которого зависит от количества и типа используемого радиоактивного вещества. Также возможная другая конструкция сферической формы, когда одна часть ядерного вещества выполнена в виде шара, а другая, отделенная защитным слоем окружает ее. Заряд окружает внешнюю часть урана и во время взрыва сжимает весь уран вместе.
Во время взрыва атомной бомбы образуется высокий, узнаваемый ядерный гриб. В это время по земле со сверхзвуковой скоростью распространяется ударная волна, разрушая до основания многоэтажные строения, вырывая с корнем деревья как легкие пылинки. Следом идет тепловая волна с температурой несколько тысяч градусов, которая испепеляет все на своем пути. Однако главное оружие атомной бомбы невозможно увидеть – волна радиации, распространяющаяся на многие километры вокруг взрыва и отравляя атмосферу и почву.
Даже если живые организмы смогли перенести первые две волны, то волна радиации вызывает очень скоротечную лучевую болезнь, убивающую за считанные минуты. Такое поражение возможно в радиусе нескольких сотен метров от взрыва. До нескольких километров от взрыва лучевая болезнь убьет человека за несколько часов или дней.
Те, кто находился за пределами непосредственного взрыва, также могут получить дозу радиации, употребляя в пищу продукты и воду, а также вдыхая воздух из зараженной зоны. Причем радиация не улетучивается мгновенно. Она накапливается в окружающей среде и может отравлять живые организмы еще долгие десятилетия после взрыва.
Вред от ядерного оружия слишком опасен, чтобы использовать его в любых условиях. От него неизбежно страдает мирное население и природе наносится непоправимый ущерб. Поэтому главное применение ядерных бомб в наше время – это сдерживание от нападения. Даже испытания ядерного оружия в настоящее время запрещены на большей части нашей планеты.
Источник: coolsci.ru