Из какой стали делают рельсы

Рельсовая сталь

Современный железнодорожный транспорт не похож на тот, что был 100 лет назад. Скорость поездов с того времени увеличилась почти в 5 раз, а грузоподъемность в 8-10. Такие количественные изменения не могли не затронуть и рельсы, по которым перемещается локомотив. Их износостойкость, прочность и твердость также достигли нового уровня своих значений. В нынешнее время рельсовая сталь обладает целом рядом функциональных особенностей.

рельсы

Химический состав

Рельсовая сталь — это группа сталей, которых объединяет общий способ применения. А именно, изготовление рельсовых путей сообщения для железнодорожного транспорта. В основе фазовой структуры сплава лежит мелко игольчатый перлит. Для выплавки металла используют либо конверторные, либо обычные дуговые сталеплавильные печи.

Рельсовые марки стали подразделяются на 2 группы в зависимости от вида применяемых раскислителей:

Рельсы — Из чего это сделано .Discovery channel

  1. В 1-ую группу входит сталь, раскисленная ферромарганцем или ферросилицием.
  2. Вторая — включает в себя раскислители на основе алюминия. Металл 2-ой группы является предпочтительней, т.к. содержит в себе меньший процент неметаллических включений.

Химический состав рельсы полностью регулируется государственным стандартом ГОСТ Р 554 97- 2013. Согласно ему, помимо основного компонента железа, сплав должен включать в себя следующий набор элементов:

  • Углерод (0,71-0,82%) является базовой составляющей любой стали. Главное назначение углерода — это увеличение механических характеристик стального сплава. Происходит это за счет связывания молекул железа частицами углерода, в результате чего образуются более крупные, твердые и одновременно прочные молекулы карбидов железа. К тому же углерод позволяет стали дополнительно упрочняться при воздействии на нее повышенной температуры. Таким образом, твердость и предел прочности рельс может быть увеличен еще на 100%.
  • Марганец (0,25-1,05%) способствует улучшению механических свойств рельсы. Благодаря его добавлению в состав удается увеличить значение ударной вязкости в среднем на 20-30%. Твердость и износостойкость также повышаются. Но в отличие от углерода, изменение данных показателей происходит без ухудшения его пластичных свойств, что играет не мало важную роль для технологичности рельсовой стали
  • Кремний (0,18-0,40%) удаляет остатки кислорода, улучшая тем самым внутреннюю кристаллическую структуру. Снижает вероятность риска образования ликвации — химической неоднородности сплава по своему химическому составу. Все это дает возможность увеличить долговечность железнодорожного пути в 1,3-1,5 раза.
  • Ванадий (0,08-0,012%) ответственен за контактную прочность рельсы. При добавлении его в сплав он сразу же связывается углеродом, образовывая карбиды ванадия. Данное соединение имеет повышенную износостойкость и плотность, тем самым увеличивая нижний порог предела выносливости сплава.
  • Азот (0,03-0,07%) относится к группе вредных примесей. Его отрицательное воздействие заключается в нейтрализации легирования стали ванадием. Т.е. вместо карбидов образуются нитриды ванадия. Они обладают низкими значениями механических свойств. Не способны термоупрочняться. В общем, сводят дорогостоящее легирование ванадием на нет.
  • Фосфор (до 0,035%) входит в группу нежелательных элементов в составе. Его главный отрицательный эффект — это повышение их хрупкости. Железнодорожное полотно обладает достаточной твердостью, но при этом не имеет должного значения прочности. Все это приводит к высокой вероятности образования трещин и последующему разлому рельсы.
  • Сера (до 0,045%) снижает технологические параметры стали. Податливость сплава во время его горячей обработки давлением резко падает. Возникает повышенный риск образования трещин. Рельсы, полученные из такой стали, отправляются в брак по причине обладания повышенной хрупкостью.

В зависимости от содержания серы и фосфора рельсовые стали подразделяются 2 сорта. Первый сорт имеет в своем составе меньший процент данных вредных примесей. Он более предпочтителен и применяется на более ответственных участках железнодорожного пути.

Как это сделано: Рельсы

состав рельсовой стали в зависимости от марки

Механические свойства

Рельсовые марки стали отличаются повышенной стойкостью к циклическим нагрузкам. Их предел прочности в зависимости от марки колеблется в пределах от 800 до 1000 МПа. Деформироваться рельсовая сталь начинает в промежутке от 600 до 810 МПа. Опять же, это зависит от того соотношения легирующих элементов в составе стального сплава.

Сталь хорошо справляется с ударной нагрузкой. Значение ударной вязкости составляет 2,5 кг/см2. Твердость сплава находится в прямой зависимости от качества проведения термической обработки. Объемная закалка способно увеличить данный параметр до 60 единиц по шкале Роквелла.

Рельсовая марка обладает умеренной пластичностью. Относительное сужение для нее равняется 25%, что позволяет прокатывать рельсы горячим способом. Предварительно нагрев их до температуры 900-1000 ºC.

железная дорога

Применение и марки рельсовой стали

Как уже было сказано ранее, основное назначение данного металла — это изготовление рельс железнодорожного пути. Ниже приведен список тех марок, которые наиболее активно применяются для этой цели:

Рельсовая марка стали сегодня является одним из ключевых материалов, применяемых при изготовлении железнодорожного полотна. Это стало благодаря оптимальным значениям механических характеристик и, что не менее важно, низкой стоимостью такого рода рельс. Но до сих пор, процесс по поиску оптимального химического состава стали данной группы продолжается. Кто знает какие решения будут приняты через год, и как они повлияют на долговечность железнодорожных путей.

Источник: prompriem.ru

Из какой стали делают рельсы

Первые рельсы из чугуна появились в середине XVIII века, по ним перемещались грузовые вагоны на гужевой тяге. Постепенно чугунные рельсы заменялись стальными. Долгий эволюционный путь привёл к появлению технологий, позволяющих изготавливать прочные виды современной рельсовой стали.

По железнодорожным магистралям теперь мчатся высокоскоростные пассажирские и тяжеловесные грузовые поезда. И в связи с большими нагрузками, оказываемыми на рельсы подвижным составом, возникают новые виды износа и дефектов, такие как проявление контактной усталости качения и тонкие внутренние трещины. Эти проблемы поставили задачу создания новых марок рельсовой стали, обладающих повышенной сопротивляемостью к износу.

из какой стали делают рельсы

Мартеновский процесс был основной технологией выплавки стали до семидесятых годов, в том числе для производства марок стали для ж/д рельсов. Но ему на смену пришла новая технология получения стальных заготовок. Они формируются в результате непрерывного литья блюмы и не имеют свойственных слиткам недостатков, таких как наличие неметаллических включений, газовых полостей и усадочных пустот. А в рельсах такие производственные дефекты проявляются в виде вертикальных трещин в головке, сеток мелких трещин и усадочных раковин.

Те, кого интересует, какая сталь используется для изготовления рельсов в настоящее время, должны знать, что сегодня выпускаются марки стали, позволяющие производить термическую обработку при изготовлении рельсов, существенно повышающую их качественные характеристики.

Типы стали для рельс

На вопрос, из какой стали сделаны рельсы, ответ один: их производят из углеродистой стали. Но качественные характеристики различаются по химическому составу, микро- и макроструктуре. Выбор марки стали для рельсов зависит от их предназначения: для эксплуатации на железных дорогах, под подъёмными кранами, в рудниках и т. д.

рельсовая сталь марка стали

Если говорить о том, из какой стали делают рельсы железнодорожные, то в данном случае учитывают условия их эксплуатации. В зависимости от этого используются рельсы с различным классом твёрдости: высоким, повышенным и обычным. Для их изготовления применяются, соответственно, базовые марки стали – 100, 90 и 76. Рельсовая сталь марки 100 имеет самую высокую твёрдость.

Существуют определённые требования к массовой доле элементов, входящих в состав марки рельсовой стали:

Источник: ajax-metall.ru

Описание рельсовых сталей

Описание рельсовых сталей и их марок весьма поучительно не только для людей, интересующихся рельсовым транспортом, но и для торгующих металлургической продукцией либо производящих ее. Важно разобраться, из каких сталей делают железнодорожные рельсы Р65 и Р43.

Также весьма актуальны характеристики и состав, коэффициент температурного расширения и другие практические параметры.

Состав

Железнодорожные пути существенно изменились по сравнению с теми, что были даже 50 лет назад, не говоря уже о вековой давности. Заметно выросли и скорость движения поездов, и нагрузка от них. Потому и к рельсовой стали на ЖД предъявляют куда более высокие требования. Необходимые параметры выдерживаются во многом благодаря тщательно подобранному химическому составу.

Читайте также:  Что такое охолощенное оружие нужна ли лицензия

Надо понимать, что рельсовый сплав — это не одна сталь, а целая группа, и их изготовление проводится различными путями. В любом случае фазовая структура вещества основана на перлите с мелкоигольчатым строением.

Производство этого материала для путевого хозяйства делится на 2 варианта сообразно применяемому металлургами раскислителю. Один вариант — использование ферромарганца либо ферросилиция. Но иногда необходимый продукт изготавливают при помощи алюминиевых окислителей. Именно сталь такого типа берут гораздо охотнее. Она ценится за меньшее количество неметаллических веществ в составе.

Как бы то ни было, рельсы должны полностью отвечать положениям ГОСТ 2013 года. Важно понимать, что конкретно делают добавки того или иного вещества. Базовым компонентом без всяких колебаний стоит назвать углерод. В составе рельсовых сталей его доля варьируется от 0,71 до 0,82%. Этот элемент связывает железные молекулы и повышает общую прочность.

Мало того, в присутствии углерода металл при повышенной температуре становится крепче.

Доля марганца варьируется в гораздо более широких пределах – от 0,25 до 1,05%. Его задача — улучшить ударную вязкость (она может быть повышена на 20 или даже на 30%). За счет марганца растут также твердость и сопротивляемость износу. Но преимущество его перед углеродом состоит в том, что этот эффект достигается без потери пластических качеств.

А подобное обстоятельство крайне важно именно для путевого хозяйства. Концентрация кремния варьируется от 0,18 до 0,4%. При реакциях с ним устраняется кислород, что позволяет оптимизировать кристаллическую решетку.

Введение кремния позволяет сократить химическую неоднородность разных участков рельса. В итоге срок эксплуатации магистрали повышается как минимум на 30%. Доля ванадия невелика — от 0,08 до 0,012%. Но все же этот компонент весьма важен — он позволяет добиться контактной прочности изделия.

Ванадий немедленно вступает в реакцию с углеродом и образует с ним прочную химическую связь (профессионалы выделяют различные карбиды ванадия). Классификация этих карбидов — целая отдельная тема. Куда важнее то, что они обеспечивают оптимальные показатели износостойкости и плотности. Как следствие, минимальная выносливость сплава возрастает.

В составе рельсовых сталей иногда присутствует 0,03 — 0,07% азота. Это уже не сознательно вводимый компонент, а вредная примесь.

В присутствии азота ванадий не может качественно легировать сталь. Вместо этого образуются вещества с низкими механическими свойствами. Термическое упрочнение оказывается невозможно. Фосфора в составе рельсовой стали может быть не более 0,035%. Этот неметалл понижает хрупкость готового изделия, что грозит растрескиванием и даже последующим разрушением рельсовых путей.

Концентрация серы не может превышать 0,045%. Ее присутствие грозит падением технологических характеристик материала. При горячей обработке сернистой стали она оказывается неподатлива, растет и опасность появления трещин.

Почти все рельсы такого происхождения бракуются при сколько-либо тщательном техническом контроле. На самые загруженные пути отпускают рельсы с наименьшей концентрацией фосфора и серы.

Основные свойства

Среди ключевых характеристик марок стали для железной дороги обязательно стоит назвать особенную стойкость к циклически прилагаемым нагрузкам. Абсолютный предел прочности у разных типов металла варьируется от 800 МПа до 1 ГПа. Но первые признаки разрушения материала обнаруживаются уже в диапазоне от 600 до 810 МПа.

Конкретные показатели зависят от вводимых улучшающих добавок и усталости конкретного образца. Структура рельсового сплава идеально отвечает требованиям защиты от ударных нагрузок. Вязкость при соударении с другими телами будет равна 2,5 кг на 1 кв. см. Показатель твердости по Роквеллу в значительной мере зависит от уровня термообработки. Если выполнить объемную закалку как следует, можно поднять этот показатель до 60 базовых единиц.

Длина железнодорожных путей достигает десятков и даже сотен километров. Потому особое значение для их использования приобретает коэффициент температурного расширения. У качественного продукта, соответствующего нормам ГОСТ, такой показатель принимается равным 0,00001118. В отношении материала могут действовать разные стандарты, выбираемые с учетом химического состава сплава.

При разборе механических свойств надо обязательно упомянуть умеренную пластичность.

Так как относительное сужение металла не превышает 1/4, вполне можно прокатывать разогретые рельсы. Температура обработки (отправки на прокатный стан) составляет от 900 до 1000 градусов. Модуль упругости качественного изделия принимается равным 210 ГПА. Нормируются также:

  • временное сопротивление;
  • предел по текучести;
  • удлинение и сокращение длины в относительном исчислении.

Все эти свойства определяются целевой категорией рельсов. В основном ключевые параметры задаются ГОСТ 2013 года. В 2020-м началось обсуждение проекта более продвинутого стандарта. Он позволит применять металлы ряда новых марок и улучшить качество продукции. Однако перспективы введения актуальной редакции документа пока туманны.

Единого ответа на вопрос о температуре плавления железнодорожных рельсов нет. Имеет значение химический состав конкретного сплава. Это обстоятельство придется учитывать не только металлургам, но и тем, кто собирается выполнять сварку. Уровень свариваемости зависит уже не только от металла. Его определяют с учетом применяемых электродов.

Стыки высокоуглеродистых конструкций (а именно таковы рельсы) при превышении допустимой температуры накапливают избыточные напряжения внутри. Это со временем может привести к образованию трещин и иных деформаций, способных даже привести к аварии. Нормальная сварка выполнима лишь на качественном оборудовании с использованием флюсов. После завершения сварочных работ шов должен быть дополнительно обработан.

Группы

Речь идет о градации рельсового металла по способам получения и применяемому исходному сырью. Первая категория вырабатывается из спокойной стали, обрабатываемой внутри ковша комплексными раскислителями. Такие составы не содержат алюминия либо иных веществ, провоцирующих появление опасных включений. Вторая категория продуктов также представляет собой заготовки из спокойной стали. Она раскисляется алюминием либо сплавом алюминия с марганцем.

Дополнительно стоит упомянуть деление на сорта. В первый сорт записывают лишь то, что полностью отвечает технологическим нормативам. При незначительных отклонениях с химической и физической точек зрения продукт относят ко второму сорту. Необходимо учитывать также повышенные требования к рельсовому материалу, используемому к востоку от Урала. Там допускается применять только первоклассный объемно-закаливаемый металл, в состав которого входят ниобий, ванадий и бор; улучшение свойств (легирование) производится при помощи азотированных ферросплавов.

Если сталь плавили в электрических печах, то даже при температуре ниже — 60 градусов она будет иметь вдвое большую ударную стойкость, чем полученная мартеновским способом. Маркировка продукции очень важна для правильной отгрузки. В ходе обработки на прокатном стане металл получает основную маркировку. Ее наносят посредством клеймения. Дополнительные обозначения создаются при помощи краски.

Эти виды обозначений показывают, соответственно, исполняемые стандарты и специфику каждого отдельного рельса.

Марки и их применение

Наиболее часто на отечественных железных дорогах используется рельс из сплава 76. На его основе делают профильную продукцию из линейки Р50 и для рельсов Р65. На эти две категории приходится не менее 75% всех опор ширококолейных магистралей. Довольно частым вариантом сейчас выступает и сплав 76Ф. Это улучшенный вариант, который за счет ванадия приобрел увеличенный ресурс.

Именно прокат 76Ф оптимален для высокоскоростных и тяжелогруженых поездов. Рельсы с маркировкой Р43 в основном делают из СТ76. Иногда в ход идут улучшенные сплавы 76Ф и 76Ц. Продукция категории К63 легируется никелем в количестве до 0,3%. Такой материал тверд и стоек к коррозии, позволяет создавать крановые рельсы.

Также могут использоваться:

  • К63Ф (включающий вольфрам);
  • М54 (материал, улучшенный марганцем и отличающийся превосходной вязкостью);
  • М68 (марка, подходящая для отдельных конструкций верхнего строения пути).

Обработка

Термическая закалка — не единственный возможный вариант. Для улучшения продукта применяют:

  • изотермический режим охлаждения;
  • закаливание по краям через подачу высокочастотного тока;
  • нормализацию;
  • закаливание за счет нагрева при прокатке.

Именно применение некоторой части тепла прокатного подогрева считается наиболее перспективным решением. Прокатанный металл сразу прогревают в индукторе. После этого его форсированно остужают. Следующей стадией работы оказывается самоотпуск на охладительном элементе. Объемная закалка рельсовой продукции в масле, применяемая еще на ряде предприятий, имеет серьезные недочеты:

  • большие затраты времени;
  • токсичность процесса;
  • расходование дорогого масла;
  • недостижимость дифференцированной твердости.
Читайте также:  Как сделать снасть на чехонь

Источник: stroy-podskazka.ru

Из какой стали делают рельсы

Форумы

ОАО «РЖД»

Фото

Дневники

Видео

Группы

Файлы

Объявления

Загрузить фото

19 октября 2022 года скоропостижно и безвременно ушел из жизни Николай Николаевич Балуев — крупнейший специалист в области железнодорожной автоматики, в течение многих лет руководивший различными подразделениями хозяйства СЦБ — от дистанции до Управления автоматики и телемеханики.

Николай Николаевич родился 13 ноября 1961 года в п. Безымянный Сеченовского района Горьковской области. В 1984 году окончил Ленинградский институт инженеров железнодорожного транспорта по специальности «Автоматика, телемеханика и связь на железнодорожном транспорте».

Студент Ленинградского института инженеров железнодорожного транспорта (1979 — 1984), электромеханик СЦБ, старший электромеханик Арзамасской дистанции сигнализации связи Горьковской железной дороги (1984 1985), исполняющий обязанности заместителя начальника по СЦБ Арзамасской дистанции сигнализации и связи Горьковской железной дороги (1985— 1986), заместитель начальника по СЦБ Арзамасской дистанции сигнализации и связи Горьковской железной дороги (1986 1990), начальник Арзамасской дистанции сигнализации и связи Горьковской железной дороги (1991 — 1993), первый заместитель начальника службы сигнализации и связи Горьковской железной дороги (1993), заместитель начальника дистанции Арзамасской дистанции сигнализации и связи Горьковской железной дороги (1993—1997), главный инженер Арзамасской дистанции сигнализации, связи и вычислительной техники Горьковской железной дороги (1997), начальник Арзамасской дистанции сигнализации и связи Горьковской железной дороги (1997 — 2001), начальник отдела эксплуатации технических средств Департамента сигнализации, централизации и блокировки МПС России (2001), заместитель руководителя Департамента сигнализации, централизации и блокировки — начальник отдела эксплуатации технических средств МПС России (2001 — 2002), заместитель начальника Управления железнодорожной автоматики и телемеханики государственного учреждения «Центр управления перевозками МПС России» — начальник отдела технической эксплуатации (2002), заместитель начальника Управления железнодорожной автоматики и телемеханики Федерального государственного унитарного предприятия «Дирекция железных дорог МПС России» — начальник отдела технической эксплуатации (2002—2003), в 2003 — 2010 годах заместитель начальника Департамента автоматики и телемеханики ОАО «Российские железные дороги» — начальник отдела организации технической эксплуатации систем железнодорожной автоматики и телемеханики.

С 13 апреля 2010 года — руководитель Департамента автоматики и телемеханики ОАО «РЖД» (с июля 2011 года — Управления автоматики и телемеханики Центральной дирекции инфраструктуры ОАО «РЖД») (назначен на должность приказом №260 президента ОАО «РЖД»)
С 24 мая 2012 года — Заместитель начальника Центральной дирекции инфраструктуры по технической политике и развитию.
С января 2015 года по 29 апреля 2015 года — Главный инженер Центральной дирекции инфраструктуры. В дальнейшем перешел на работу в ООО «Скоростные магистрали».
Награжден медалью «30 лет БАМ», «За безупречный труд на железнодорожном транспорте. 20 лет», именными часами Министра путей сообщения.

Внес большой вклад в развитие железнодорожной автоматики и телемеханики, определял идеологию создания и концепцию внедрения автоматизированных систем учета и анализа работы устройств железнодорожной автоматики и телемеханики.

Ссылки сообщества
Социальные группы
Изображения и альбомы
Видеокаталог

Моя страница (?)

Источник: scbist.com

Рельсовая сталь: марка и характеристики железнодорожных ЖД путей

жд-рельсы из чего делают

Длительная и беспроблемная эксплуатация элементов ВСП возможна лишь тогда, когда они выполнены из подходящего материала. И сегодня мы посмотрим, из какой марки стали изготавливают железнодорожные рельсовые конструкции, почему выбран именно этот металл для рельсов, какими свойствами и характеристиками он обладает. Информация поможет вам правильно выбрать подходящие прокатные изделия для непосредственного строительства колеи.

жд-детали

Важно учитывать специфику современности. За почти 100 лет грузоподъемность ЖД-транспорта увеличилась в 8-10 раз, а скорость его передвижения по полотну возросла в 5 раз. Получается, что опорные конструкции испытывают совсем другие нагрузки. Поэтому необходимо, чтобы они были более прочными, твердыми и износостойкими, чем век назад.

виды жд/конструкций

Рельсовая сталь

Объединяет в себе сразу несколько типов сходных металлов, аналогичных по способу применения – используемых для изготовления элементов ВСП (верхнего строения пути). Мелкоигольчатый перлит составляет основу фазовой структуры для всех вариантов, выплавляемых в конверторных или дуговых печах. После термической обработки он становится максимально однородным, приобретая вязкость, достаточную твердость и высокое сопротивление износу.

По раскислителям делится на 2 принципиальные группы:

I – вредные примеси убираются с помощью ферромарганца или ферросилиция;

II – для удаления кислорода применяются алюминиевые включения (считающиеся более предпочтительными из-за их природы).

стальные жд-конструкции

Основные материалы для изготовления рельсов

Многое зависит от того, в какой сфере будут использоваться прокатные изделия. Из конвертерной стали исполняются элементы ВСП, укладываемые в ЖД-путь и формирующие широкую или узкую колею. А вот крановым опорным металлоконструкциям уже необходимо выдерживать совсем другие нагрузки, поэтому для их выпуска заводы берут высокоуглеродистые сплавы.

Совсем другой случай – так называемые контактные, монтируемые для создания полотна метрополитена. Они не принимают огромные напряжения, зато должны эффективно снимать ток, поэтому их делают из сравнительно мягких металлов.

материал для жд-пути

Химический состав и его преимущества

Для основных марок стали ЖД рельса он регламентирован ГОСТом Р 554 97-2013. Данный межгосударственный стандарт устанавливает, что основной компонент – это железо, но помимо него в сплав обязан входить еще ряд элементов – в следующих массовых долях:

  • Углерод (карбон) – от 0,71 до 0,82%, усиливает механические свойства примерно вдвое. Его частицы связывают ферро-молекулы, превращая их в карбиды, которые гораздо прочнее и крупнее. И высокотемпературные воздействия становятся не настолько критичными.
  • Марганец – от 0,25 до 1,05%, улучшает ударную вязкость (на четверть-треть), а также износостойкость и твердость. Причем пластичность не ухудшается, что самым положительным образом влияет на технологичность готового прокатного изделия.
  • Кремний – от 0,18 до 0,4%, требуется для удаления кислородных примесей, а значит и для оптимизации внутренней кристаллической структуры материала. С такой добавкой существенно уменьшается вероятность появления ликвационных пятен, а долговечность повышается примерно в 1,4 раза.
  • Ванадий – от 0,012 до 0,08%, в зависимости от конкретной марки стали для изготовления железнодорожных рельсов. Важен для обеспечения достаточной контактной прочности. В соединении с углеродом образует карбиды, повышающие предел выносливости (а именно нижний его порог).

Похожие новости

Отдельного рассмотрения заслуживают нежелательные или даже вредные примеси, вычленить которые до конца с помощью современных технологий пока не удается. Это:

  • Азот – от 0,03 до 0,07%, плох тем, что нейтрализует легирующий эффект. Из-за него в толще профиля образуются нитриды, которые не поддаются термоупрочнению, а значит снижают механические свойства готовых элементов ВСП.
  • Сера – до 0,045%. Ее включения не дают сплаву быть податливым при горячей обработке под давлением. В результате после проката может получиться изделие, склонное к образованию трещин, и его придется сразу же отбраковать.
  • Фосфор – до 0,035. Он тоже повышает хрупкость металлоконструкции. С ним быстро накапливается усталость, что приводит к скорым расслоениям и разломам.

Ради максимальной наглядности представляем химический состав популярных марок стали для железнодорожных рельсов в следующей сводной таблице:

В марках стали буквы М, К, Э – обозначают способ выплавки, цифры – среднюю массовую долю углерода, Буквы Ф, С, Х, Т – легирование стали ванадием, кремнием, хромом и титаном соответственно.

Допускается массовая доля остаточных элементов – хрома (В рельсах категории Т1, Т2, H), никеля и меди не более 0,15% каждого, при суммарной массовой доле не более 0,40%.

Химический состав для Р65К должен соответствовать указанному, за исключением массовой доли углерода, которая должна быть 0,83 – 0,87%. При этом цифры в марке стали заменяют на 85.

Как видите, дополнительно указаны еще два компонента – титан и хром. Мы не будем их подробно описывать, так как они присутствуют далеко не всегда, но первый из них является полезной примесью, чей положительный эффект сводится к повышению прочности, а второй – остаточным элементом. Также стоит обратить внимание на наличие алюминия, помогающего снизить вес без ухудшения других качественных показателей.

Читайте также:  Где можно ловить стерлядь

Механические свойства

  • Сопротивляемость ударным воздействиям – твердость легированного добавками материала после объемной закалки достигает 60 HRC по шкале Роквелла, вязкость – 2,5 кг/см2. Благодаря этому уже уложенные металлоконструкции сложно случайно повредить.
  • Стойкость к циклическим нагрузкам – жд металлопрокат изготавливают из стали, потому что предел его прочности доходит до 1000 МПа. В климатических условиях наших широт они не деформируются в течение десятилетий (особенно при грамотном уходе).
  • Умеренная пластичность – изделие горячего проката при производстве можно нагревать до температуры в 1000 градусов Цельсия. Показатель его относительного сужения не выйдет за пределы 25%. Получается профиль без пустот и мелких дефектов, которые в процессе эксплуатации могли бы быстро превратиться в серьезные изъяны.

Сочетание настолько практичных свойств также обуславливает постоянную популярность и повсеместное использование двутавровых направляющих именно из рассматриваемого сплава.

Применение и марки рельсовой стали

Основная сфера использования металла (что ясно из его названия) – выпуск прокатных изделий для укладки ВСП.

Теперь рассмотрим самые востребованные вариации сплавов:

  • 76 – самая популярная. Из нее изготавливаются профили серий Р50 и Р65, составляющие 3/4 всех опорных конструкций ширококолейных ЖД-полотен.
  • 76Ф – уже усиленная ванадием, с повышенным ресурсом. Поэтому используется для производства проката, который в дальнейшем будет укладываться в линии для высокоскоростного движения локомотивов и другого быстрого транспорта.
  • К63 – легирована никелем (до 0,3%), отличается впечатляющей твердостью и лучшей коррозионной стойкостью. Из нее выполняются крановые рельсы, марка стали позволяет выдерживать нагрузки, в других случаях ставшие критическими.
  • К63Ф – с добавками вольфрама, а значит с еще более высокой циклической прочностью.
  • М54 – обогащенная марганцем и за счет этого обладающая хорошей вязкостью. Нашла свое применение при выпуске накладок для мест стыка и стрелочных переводов.
  • М68 – актуальная при производстве специфических элементов верхнего строения пути.

Необходимость механических свойств в различных сочетаниях и определила такое разнообразие вариантов. Добавьте сюда сравнительно малый вес и низкую стоимость, и получите очень практичную конструкцию для строительства транспортных линий и узлов развязки.

Указывается тип рельсовой стали на маркировке, которая может быть как постоянной, так и временной. В первом случае она наносится клеймением, во втором – краской. В числе прочих обозначений – соответствие прокатного изделия ГОСТу, а также дополнительные его особенности (укороченная длина, сорт, расположение технических отверстий и тому подобное).

Эксплуатировать профили можно вплоть до истечения срока наработки, указанного заводом-производителем и исчисляемого по пропущенному тоннажу. Возможен и преждевременный выход элементов ВСП из строя, вызванный появлением дефектов. Тогда их нужно менять или ремонтировать. О различных видах дефектах вы можете прочитать в этой статье.

рельсовая сталь

Сходным образом заводы-производители выпускают не только конструкции для формирования полотна, но и другие важные элементы используемые на ЖД-объектах. Взглянем на них подробнее.

Колесные стали – для железнодорожных колес

жд-пути прочность

Ободья подвижных частей транспорта просто обязаны быть износостойкими (иначе все прочностные преимущества верхнего строения пути будут сведены к нулю). Поэтому они и производятся из тех типов рассматриваемого нами металла, которые обогащены карбидами. Тогда они реже выходят из строя, а значит меньше провоцируют возникновение аварийных ситуаций, а в долгосрочной перспективе еще и удешевляют стоимость эксплуатации локомотивов и вагонов.

Внимание, ошибочно считать, что все риски нивелируются подходящими примесями. Даже полезные добавки должны вводиться в сплав умеренно – сейчас объясним почему.

Углерод в колесных сталях

металл для рельсов

Анализируя химический состав, мы сделали вывод, что включения карбона усиливают сопротивление металла к износу, но они же и повышают восприимчивость к критическим температурам. В случае с ободьями особенно важно сделать их несклонными к термическим повреждениям. Нужно помнить, что преждевременный износ (тем более при халатном обслуживании) способен привести к тому, что движущийся на внушительной скорости транспорт сойдет с пути.

Поэтому нет смысла ориентироваться исключительно на высокоуглеродистые сплавы – их прочность в данном случае вполне способна сыграть во вред. Для выпуска колес может не подойти обычная рельсовая сталь, марка для их изготовления обязана соответствовать следующим стандартам:

  • AAR M-107/M-208 – американский;
  • EN 13262 – европейский;
  • JIS E 5402-1 – японский;
  • ГОСТ 10791-2011 – межотраслевой.

Отдельного внимания заслуживают проектные решения Страны восходящего солнца. ЖД-сообщение там достаточно сильно развито и сегодня находится на том современном уровне, на который стоит равняться уже не только государствам СНГ. Локомотивы там передовые и движутся на внушительных скоростях. Каким же образом подвижные части этого транспорта выдерживают серьезнейшие нагрузки? Попробуем разобраться.

Японские колесные стали

Примерно 90 лет назад тамошние инженеры и строители столкнулись с глобальной проблемой: специалисты обнаружили, что колеса их транспорта преждевременно изнашиваются, хотя ресурс был рассчитан на годы вперед.

из какого металла рельсы

Объяснение было найдено и оказалось простым: в сплаве для выпуска металлических элементов, изготовленным по заимствованным европейским технологиям, содержалось всего 0,5% углерода. Такой массовой доли было явно недостаточно для обеспечения необходимой износостойкости.

Ученые из Японии понимали, что повышение процента карбона в толще профиля может привести и к негативным последствиям (в частности, к появлению склонности к термическим повреждениям). Поэтому были запущены масштабные исследования, целью которых стало нахождение оптимальной концентрации добавки с сохранением всех полезных свойств. В результате остановились на отметке в 0,6-0,75%, которой и соответствует стандарт JIS E 5402-1.

Выше углерод в колесах – меньше износ рельсов

Поиски позволили сделать еще один важный вывод: при балансе примесей и основного металла дольше эксплуатируются не только подвижные части транспорта, но и те элементы ВСП, по которым они едут.

Объяснение данному эффекту тоже нашли: мельчайшие частицы, откалываются от колес, оседают в месте контакта и выходит абразивное воздействие на поверхность катания. В итоге на головке появляются царапины, а со временем и трещины.

Японские колеса на немецкой железной дороге

рельсовая сталь характеристики

В ЖД-сообщении Германии наблюдалась проблема: подвижные части местных поездов (ICE) быстро деформировались, что приводило к их выходу из строя, к потере качества сцепления, к возникновению аварийных ситуаций. Когда специалисты Deutsche Bann узнали, что локомотивы компании Shinkan-sen из Страны восходящего солнца не испытывают подобных сложностей даже при движении на максимально допустимых скоростях, они захотели провести сравнительные испытания.

На немецкие составы установили как европейские колеса, изготовленные из сплава ER7 (с массовой долей карбона до 0,52%), так и японские, выполненные по стандарту JIS E 5402-1. После 6 лет независимых испытаний, с 2003 по 2009 год, второй вариант показал, что он в 1,5 раза эффективнее сопротивляется износу.

Параллельно регулярно проверялись и металлоконструкции, уложенные в колею. Оказалось, что они тоже стираются медленнее – ровно в 1,5 раза. На поверхности контакта остается меньше абразивных частиц. Обогащение сырья карбоном дает неплохую прибавку к эксплуатационному ресурсу – спасибо японцам за это открытие.

Преимущества железнодорожных рельсов

Современные их разновидности обладают следующими плюсами (и такой материал, как рельсовая сталь, помогает подчеркнуть эти практические достоинства):

  • равномерно распределяют испытываемые нагрузки по всей длине полотна;
  • обеспечивают надежную поверхность для колес транспорта, помогая тому развивать и поддерживать высокую скорость передвижения;
  • обладают значительным ресурсом (свыше 50 лет), в течение которого стойко выдерживают серьезные напряжения и эффективно сопротивляются износу.

Тем самым они помогают справиться с главной задачей – являются залогом быстрой и безопасной перевозки пассажиров и грузов.

Теперь, когда вы знаете, какой бывает материал для производства железнодорожного металлопроката, его характеристики, химический состав, а также механические свойства, будет проще выбрать конкретную марку, оптимально подходящую для обустройства ЖД-объекта. А компания «ПромПутьСнабжение» всегда поможет быстро получить необходимый объем металлоконструкций по привлекательной цене – обращайтесь для заказа.

Источник: promputsnab.ru

Рейтинг
( Пока оценок нет )
Загрузка ...